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Abstract

Mutual information tells us how much the uncertainty associated with one variable is reduced by the knowledge
of another one [18, 2]. It is a useful tool for quantifying relationships and has many applications to statistical
modelling - for example in various types of clustering where one aims to maximise the dependencies within a
partition. Typically, like most information-theoretic quantities, mutual information is estimated for variables
that are either discrete or take values in a coordinate space. However, many important data types have distance
metrics or measures of similarity, but no coordinates on them. The spaces induced by these metrics are not
manifolds and their integration measure is not so obvious. Datasets of this type are collected from electrophys-
iological experiments in neuroscience and gene expression data in genetics and biochemistry, but also in other
fields like image analysis and data retrieval.

The purpose of this project is to implement and test an estimator for calculating mutual information between
data, where one or both variables come from a metric space without coordinates. The model estimator itself
has been described in [27], but has not been implemented and tested until now. It aims to provide a simple
approach to the Kozachenko- Leonenko estimator for mutual information [5], that extends it in order to apply
to the broader class of metric-space data.

The model is particularly relevant to neuroscience because it addresses the problem of calculating information
theory quantities from the similarity measures on the space of spike trains. This is the application that motivates
it and will serve as the main framework for producing the data, used to test and adjust it.

Application software will be developed in Python. It is the preferred choice over MATLAB for example, because
it is a modern high-level language with nice syntax and structure that supports various coding styles. It also
has libraries and packages which are analogous to the MATLAB functionality relevant to the task - NumPy,
SciPy, PyLab, matplotlib and so on. In addition to this, it offers interfaces to other tools for computational
neuroscience and mathematics, which could be useful for the future development of the project.

The implementation will apply the suggested model to fictive spike-train data generated using a stochastic model
and data related to it that is produced by a deterministic neural simulation. The proposed thesis will aim to
investigate the model’s correctness and evaluate its performance on various tasks. The analysed results will serve
its future application to real experimental neuroscientific data.
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1 Background

1.1 Problem outline

Estimating mutual information in metric spaces

Information theory is the domain of applied mathematics that defines models and techniques for quantisation, stor-
age and communication of information. It is based on probability theory and statistics and is therefore traditionally
applied in spaces where an intuitive integration measure can be used in order for probability mass or density to be
easily estimated. Typically these are coordinate spaces such as discrete vector spaces or integrable manifolds.

The model under investigation tackles the problem of estimating information-theoretic quantities, namely mutual
information and relative entropy, for variables taking values in the broader class of metric spaces. These are sets
with distances between all members defining a metric, without it necessarily invoking a coordinate system. An al-
ternative approach is taken by defining a measure on metric spaces as the probability mass contained within a region.

This chapter introduces the theoretic and scientific basis underlying the model and its application. First, the
standard notions of information theory are introduced, along with distance metrics and metric spaces. Next, the
suggested approach to the outlined problem is described, and the metrics relevant to its application in the context
of neuroscientific data are explored. Finally, the basic computational models for neural voltage dynamics are taken
account of, as well as the tools and techniques used to simulate them numerically.

Measuring information

Entropy is the central and fundamental notion in information theory [18]. It envelops the properties one would
require of an information measure. In particular, it quantifies the uncertainty associated with the outcome of a
chance event, mathematically modelled by a random variable. That is, it gives a measure of the average amount
of information necessary to describe the random variable. First coined by Shannon [2], the entropy or average
self-information of a random variable X, taking values in a set of outcomes X , is defined as the negative logarithms
of distinct- outcome probabilities {p(x)|x ∈ X} summed and weighted over their probability distribution. This is
given by the formula:

H(X) = −
∑
x∈X

p(x) log2 p(x) (1)

Taking a logarithm to the base two, entropy measures the minimal expected size of outcome- encoding in binary
bits, though this can easily be scaled to other units using the properties of logarithms. Bits can be thought of as
the number of binary (yes or no) questions it would take on average to determine the outcome of an event modelled
by a random variable if the questions are ordered efficiently - in descending order of outcome probability.

Shannon’s proof of correctness of the definition above relies on the necessity for it to possess three key properties.
Firstly, the information measure of a variable must be continuous in the probability of its outcome - ranging
in [0, 1]. Secondly, if the variable is uniformly distributed - which means that there is maximum uncertainty or
informativeness associated with it - there must be a monotonically increasing relationship between the number of
possible values it takes and its entropy. And third, if a choice among the set of outcomes is split into successive
choices among subsets, the entropy of the whole set should equal the weighted sum of entropies of the splits - for
example:
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Being defined in terms of the probability distribution of the variable of interest, the notion of entropy can be
extended to reflect joint (eq. 3) and conditional (eq. 5) probability distributions.

If X and Y are two events and p(x, y) is the probability of the joint occurrence of their outcomes x and y, the
entropy of the joint event is

H(X,Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log2 p(x, y) (3)
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Calculating mutual information in metric spaces

with the property

H(X,Y ) ≤ H(X) +H(Y ). (4)

The above is an equality if and only if X and Y are independent, in other words iff p(x, y) = p(x)p(y).

For every outcome y of Y there is a conditional probability p(x|y) that the outcome of X is x. The average of the
entropy of X over outcomes of Y , weighted by the probability of each outcome y, gives the conditional entropy of
X given Y :

H(X|Y ) =
∑
y∈Y

p(y)H(X|Y = y) = −
∑
y∈Y

p(y)
∑
x∈X

p(x|y) log2 p(x|y)

H(X|Y ) = −
∑
y∈Y

∑
x∈X

p(x, y) log2 p(x|y)
(5)

This quantity measures the uncertainty associated with X on average if the outcome of Y is known.

The quantity of interest to this project - mutual information - is based on the concept of relative entropy, also
known as Kullback-Leibler divergence. Relative entropy gives a measure of the distance between two probability
distributions. It is defined as the mean weighted logarithm of their likelihood ratio of the distributions:

D(p||q) =
∑
x∈X

p(x) log2
p(x)

q(x)
(6)

In the context of coding theory, the relative entropy D(p||q) measures the inefficiency of encoding a random variable
resulting from the assumption that its distribution is q while it is in fact p. That is, encoding the outcome of X
would take on average D(p||q) = H(q) − H(p) extra bits resulting in H(p) + D(p||q) bits instead of H(p) bits.
Although it is often called Kullback-Leibler distance it is not a true distance metric since it does not symmetric and
it does not satisfy the triangle inequality.

Mutual information is defined as the relative entropy between the joint distribution of X and Y - p(x, y) and the
product distribution p(x)p(y):

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log2
p(x, y)

p(x)p(y)
(7)

It measures the amount of information one variable contains about another one or in other words, how much
knowing one variable decreases uncertainty about another one. The mutual information between two variables
equals zero if and only if they are statistically independent. This makes it a more powerful tool for establishing a
relationship between two variables than correlation because it is capable of describing a relationship even if it is
not linear or monotonic.

One last information-theoretic concept is explored here that will be used in the context of testing the mutual
information estimator later on. Namely, this is the data-processing inequality according to which there is no way
to increase the information content shared between two signals by means of physical manipulation [18]. In other
words this means that information is generally lost but never gained when transmitted through a noisy channel [25].

This in turn relies on the idea of what in probability theory is called a Markov chain. Random variables X,Y, Z
are said to form a Markov chain X → Y → Z if the conditional probability distribution of Z depends only and Y
and it is independent of the distribution of X, that is the joint probability mass function of the three is given by

p(x, y, z) = p(x)p(y|x)p(z|y). (8)

This implies X and Z are conditionally independent given Y :

p(x, z|y) = p(x, y, z)

p(y)
=

p(x, y)p(z|y)
p(y)

= p(x|y)p(z|y). (9)

The data processing inequality states that

X → Y → Z ⇒ I(X;Y ) ≥ I(X;Z) (10)

2



Chapter 1 BACKGROUND

This is because X and Z are conditionally independent and thus I(X;Z|Y ) = 0 - there is no information about
X that Z contains and Y does not. The Markov chain is usually modelling a random process that goes from one
state to another with the transition depending only on the preceding state. Although not directly related to the
task at hand, this concept will be useful when analysing data recorded from the activity of consecutively connected
neurons. In particular the mutual information between neural responses should provide some insight about the
neural network’s connectivity.

Metrics and similarity measures

Given a space X a distance metric is a function Dis : X × X → R, such that for ∀x, y, z it has the properties:

1. Positive: if x ̸= y ⇒ Dis(x, y) > 0

2. Symmetric: Dis(x, y) = Dis(y, x)

3. Triangle inequality: Dis(x, z) ≤ Dis(x, y) +Dis(y, z)

Perhaps the most familiar distance metric is Euclidean distance - the ordinary “straight line” distance between
two points in a vector space. It is defined as the square root of the sum of squared differences between all vector
components in an N -dimensional space:

Dis2(x, y) =

(
N∑
i=1

|xi − yi|2
)1/2

(11)

The notion is generalised by Minkowski distances as a set of Lp-norms for p ≥ 1 - these are guaranteed to be the
distance metrics for vector spaces which comply with the triangle inequality:

Disp(x, y) =

(
N∑
i=1

|xi − yi|p
)1/p

(12)

Euclidean distance is thus the L2-norm, whereas the L1-norm - where one “moves” only in orthogonal directions
parallel to the coordinate axes - is known as Manhattan distance.

Numerous statistical and distance-based models employ Minkowski distance metrics in probability estimation, func-
tion regression, clustering and classification tasks as they are intrinsically compatible with data that can be naturally
represented in a coordinate vector space. There exist however many other types of distance metrics that can be
applied without necessarily representing the domain of interest as a vector space. Such metrics can for example be
very useful for measuring dissimilarity between patterns in string matching.

In information theory and coding theory, Hamming distance counts the number of positions (components) in which
two vectors differ. It is of particular importance to string matching, as an expression of dissimilarity between strings
based on their number of differing symbols (or bits). Alternatively, it be thought of as the minimum number of
symbol swaps, or errors, required to transform one string into another. Although Hamming distance is not a true
Lp norm, it does satisfy the triangle inequality and is indeed a true distance metric. Under the assumption that
00 = 0 and x0 = 1 for x ̸= 0, it can be formalised as the L0- norm:

Dis0(x, y) =

N∑
i=1

(xi − yi)
0 =

N∑
i=1

I[xi = yi] (13)

This kind of metrics can in turn be generalised to the class of edit-distance metrics, by considering different cost
functions for insertion, deletion and substitution, possibly tailored to a particular problem or purpose. In the case
of spike trains, there exist a range of edit-distance metrics which take into account structural characteristics based
on spike timing, such as repeating patterns, that are considered to carry the semantics of neural signalling. This
kind of meaning cannot always be conveyed by metrics relying on mapping spike trains to a vector space. On the
other hand, there is also another type of spike-train metrics, which take a different approach to achieve the same
task - by mapping spike trains into the vector spaces of continuous functions. Both of these induce non-coordinate
spaces. They will be discussed in detail in the next section.

3



Calculating mutual information in metric spaces

The problem at hand arises from the use of these metrics. A measure of dissimilarity between any two members of
the set of possible spike trains together with the set itself, form a metric space. A method is needed for estimating
information-theoretic quantities, and therefore probabilities, in a metric space. There is no meaningful coordinate
system in such metric spaces but this does not rule out alternative methods for estimating probability densities.
The proposed model [27] takes the approach of the Kozachenko-Leonenko [5] entropy estimator, which estimates
local densities based on k-nearest-neighbour statistics. It modifies and extends it by using probability as a measure
of volumes in neighbourhoods, instead of depending on a space dimensionality for this purpose, and thus addresses
the problems associated with measuring information in the metric spaces of spike trains.

Being able to estimate such information theory quantities is important as it can aid the study and development of
neurodynamics coding theories and serve as a useful tool for quantifying relationships between neural activity. The
relevance of such a model however is not constrained exclusively to the metric spaces of spike trains as there are
many other contexts in which non- coordinate distance metrics are used.

1.2 Approach

Estimating information: possible routes

One of the principal objectives of neuroscience is to discover the mechanisms used by nerve cells to communicate
information. It is commonly accepted that neural information processing relies on the transmission of sequences of
stereotypical events. These are spikes in the potential difference across a neuron’s membrane, taken as a function
of time. They are usually referred to as spikes or action potentials and a sequence of their times of occurrence is
what forms spike trains. The biophysical description of the process behind spike production will be discussed in
the next section.

Computational neuroscience is interested in investigating the structural properties of spike trains from a statistical
point of view in order to identify the features conveying information. Although this is an open problem, it is
known that these include not only obvious features, such as the number of spikes fired over a time period, but also
precise spike timing and more subtle features dependent on it, like patterns of intervals or action potentials - both
over time and across a population [16]. The theoretical framework employed to unravel these statistical properties
is grounded in the foundations of information theory. Being able to quantify the information conveyed between
neurons, combined with the appropriate experimental techniques and stimulations, can be used to determine the
key statistical features contained in spike trains [16].

0 5 10 15 20 25 30 35
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Figure 2: Example of a typical histogram method used to approximate a continuous gamma function at a discrete
sampling rate subject to some quantisation. The recorded values can then be binned across the domain of the
sampled variable to approximate probability densities.

The most straight-forward technique for information estimation on continuous signals sampled at some frequency is
to break up the domains of the variable(s) of interest into partitions of finite size referred to as “bins”, and approx-
imate the standard analytic definition discretely, using the fractions of sample points taking values in the ranges of
these bins as local density estimates [17]. A similar kind of binning strategy can also be used for embedding spike
trains into a discrete space. The temporal window of observation of a neural response is subdivided into discrete

4



Chapter 1 BACKGROUND

time slices. Each of these bins can then correspond a distinct dimension in the vector space of possible binary words
provided that the bins are small enough to contain no more than one spike. This is the traditional direct method
for working out information quantities on spike trains developed by Bialek and Strong et al. [11].

The problem with the above approach is that the bins must be very narrow - down to a millisecond [9] - in order to
capture spike timing with good precision. This requires estimation of a tremendous amount of response probabili-
ties as the number of possible spike distributions increases exponentially with the model’s resolution - for example
≈ 2.23 × 10491 possible words over just a quarter of a second at 1 ms precision. As the bias of such estimates is
roughly proportional to the number of possibilities, it takes unrealistically large amounts of sample data in order for
them to be accurate [16]. In fact, this is one of the main difficulties associated with measuring information-theoretic
quantities in neuroscience. Furthermore high-dimensional spaces tend to be very sparse, which makes the issue even
bigger.

The sampling problem is generally addressed by non-parametric estimation methods. The Kozachenko-Leonenko
entropy estimator [5] is one such method which addresses the issue for data taking values in vector spaces. It
is described as ”a little-known asymptotically unbiased ’binless’ estimator of differential entropy” [16]. The basic
idea behind this method is to use k-nearest neighbour distance statistics to estimate local densities, as first pro-
posed in [4]. It has substantial computational advantages for estimating the entropy of a continuous distribution
in a Euclidean vector space and is guaranteed to be unbiased in the limit of infinite sample data [5]. In [16] the
Kozachenko-Leonenko method is adopted for the estimation of the rate of transmitted information through a neu-
ral ”channel”, which depends on entropy estimation. In this paper however a dimensionality assumption is made,
which is resolved through a rather unnatural foliation of the space of spike trains - it is split into two components:
a continuous one representing spike timing and a discrete one expressing the number of spikes in a neural response.
It is demonstrated that for a limited-sized sample data the method outperforms considerably traditional estimators
relying on binning.

Although this approach to entropy estimation dates back to [4], for a long time it had not been adapted to estimate
mutual information. A simple way to do this would be to make use of the chain rule for entropy and the definition
of mutual information:

Chain rule

H(X,Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y ) (14)

Mutual Information

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) (15)

From the above it follows that mutual information can be expressed as:

I(X;Y ) = H(X) +H(Y )−H(X,Y ) (16)

The k-th nearest neighbour estimator can be applied to individual terms. However this could mean that statistical
errors incur from all individual entropy estimates. In [17] two slightly different algorithms both based on the ideas
of Kozachenko and Leonenko are given which deal with this issue and are shown to produce satisfactory results.
These however still depend on the dimensionality of the variables and cannot be applied directly to the broader
class of metric spaces.

Houghton and Tobin first propose a method for calculating mutual information in metric spaces in [23]. Here the
kernel density estimation technique (KDE) for approximating probability distributions is adapted to estimate local
densities on metric space data. The model is motivated by the difficulty of estimating mutual information between
discrete stimuli and spike-train responses.

It is noticed that for large enough sample sets the KDE estimator resembles a k-th nearest neighbour estimator such
as the one proposed in [17]. By using different values of k in the subspaces of each variable the terms depending
on their dimensionalities cancel. The method is tested against a histogram approach, which essentially follows the
binning strategy, on fictive data, modelled to mimic the properties of spike trains and electrophysiological data. It
is shown that the KDE estimator considerably outperforms the histogram approach as sample size and dimension-
ality/number of ”spikes” increase. The metric-space method’s estimation error is low and decreases as the amount
of data grows, in contrast to the binning one which retains a relatively high error rate throughout.

5



Calculating mutual information in metric spaces

This leads to the model of interest, proposed by Houghton in [27], which builds on the results seen in [23] and
gives a method for estimating mutual information in both the cases when one variable is discrete and when both
of the variables come from a metric space. The derivation is more straight-forward and intuitive - some of the
complications associated with the KDE technique are avoided and the terms dependent on dimensionality in the
k-th nearest neighbour estimator introduced in [17] are avoided. In addition a formula is derived for estimating the
Kullback-Leibler divergence between two probability distributions in the same metric space.

The proposed model: probability as a measure in open balls

The lack of coordinates necessitates the introduction of an alternative strategy for measuring volumes in a metric
space. The basic idea in [27] is that if X is a metric space it is possible to measure the distance d(x, y) between
any two points x and y and it is therefore possible to define a region, or open ball, Bϵ around a point xi such that

Bϵ = {t ∈ X : d(x, t) < ϵ}. (17)

The volume V of the ball can then be estimated from the marginal probability mass contained in it - that is by
counting the number of sample points it contains.

The probability that such a region contains exactly k out of N possible sample points is given by the binomial
distribution:

Pk(xi) =

(
N

k

)
F k
i (1− Fi)

N−k (18)

Here Fi is the probability mass contained in region B. If we assume that the probability mass function is constant
within the region, then it can be approximated by

Fi ≈ V pX(xi). (19)

ε

xi

X

Bε(xi)

Figure 3: Open ball around of radius ϵ around instance xi in a metric space with non-manifold geometry X .

The justification for this is that variation in pX(xi) should be negligible for the purposes of this approximation as
long as the ball B is small enough. The same assumption underlies the models in [5, 17]. On the other hand, the
expected number of points in the region is given by

⟨k⟩ = NFi. (20)

Letting #[B] denote the number of points in region B as estimated from the data, from the above it follows that

NV pX(xi) ≈ #[B(xi, V )]. (21)

6



Chapter 1 BACKGROUND

Expressing equation 1 for a finite sample set of size N as

H(X) = − 1

N

N∑
i=1

log2 pX(xi) (22)

and using the above approximation to estimate

log2 pX(xi) ≈ log2
#[B(xi, V )]

NV
(23)

the entropy of a random variable X in metric space, using region-based local density estimates, can be given as

H(X) ≈ log2 N + log2 V −
1

N

N∑
i=1

log2 #[B(xi, V )]. (24)

This formula is similar to the ones proposed in [5, 17] but it is simpler. The main difference is that the probability
is estimated using the expected number of points in a region rather than the size of the ball containing a given
number of points in a coordinate space. This approach is taken in order to avoid quantities that depend on inte-
grable manifolds.

Nonetheless a way to measure the volume of the region is needed. Since there is no obvious measure on a metric
space without coordinates, it can be defined in terms of the probability distribution estimated from the data as the
fraction of points falling in the region:

V ≈ #[B]

N
. (25)

Using such a measure, together with the above approximation for pX(x), the probability would always equal one
and therefore it would always give a trivial estimate of entropy equal to zero. Probability cannot be used as a
measure to estimate the entropy of a single random variable as it becomes self-referential. Furthermore the entropy
of a variable depends strictly on the measure used in the domain of the variable. Mutual information however is
not measure-dependent and it involves more than one variable. Therefore one probability distribution can be used
as a measure for estimating others. This is the key idea underlying the suggested model.

In [27] two cases are considered reflecting two types of neuroscientific experiments. In the first, one of the variables
is discrete, representing the stimulus - for example the location of a laboratory mouse on a 2D arena, and the other
one takes values in a metric space - such as a spike train in the space of a similarity metric. In the second one,
both random variables take values in metric spaces.

First the case when one variable is discrete is introduced. Given a discrete set of stimuli S of size |S| = ns, each
presented exactly nt times (for simplicity), a total number of N = nsnt spike-train responses from a set R are
elicited. Using a similarity metric on the space of spike trains, regions around each sample point are defined with ϵ
chosen such that they contain exactly h neighbouring samples, that is V = h/N . With the total probability, pR(r)
used as a measure, the entropy equals zero as seen before, but it can be used for defining an estimate of conditional
entropy, based on the conditioned probability:

pR|S=s(r) ≈
#[B]

ntV
. (26)

Here #[B] counts how many of the nt responses to stimulus s are among the h nearest neighbours of ri in the
sample set as whole. This is analogous to the approximation from equation 21. The entropy of R, conditioned on
stimulus s is then estimated by

H(R|S = s) ≈ − 1

nt

nt∑
i=1

log2
#[B(ri, V )]

ntV

≈ − 1

nt

nt∑
i=1

log2
ns#[B(ri, h/N)]

h

(27)

Averaging over s ∈ S as in the equation for conditional entropy (eq. 5) this gives

H(R|S) ≈ − 1

N

N∑
i=1

log2
ns#[B(ri, V )]

h
. (28)
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Using equation 15 the mutual between R and S information is derived as

I(R;S) ≈ 1

N

N∑
i=1

log2
ns#[B(ri, V )]

h
(29)

since H(R) = 0 using the same measure.

In the case when both variables S and R take values in metric spaces the probability mass functions pS(s) and
pR(r) are used to measure volumes in S and R resulting in entropy estimates equal to zero. But these measures
induce a measure on S ×R, which is the space where stimulus-response sample points live. A region, or square, in
S ×R is then defined as the cross-section of open balls in S and R:

S

(
si, ri,

h1

N
,
h2

N

)
=

{
(s, r) ∈ S ×R : s ∈ BS

(
si,

h1

N

)
, r ∈ BR

(
ri,

h2

N

)}
, (30)

that is the set of stimulus-response pairs where s is one of the h1 nearest neighbours of si and r is one of the h2

nearest neighbours of ri.

Under this new measure the volume of the region is

vol S

(
si, ri,

h1

N
,
h2

N

)
= vol BS

(
si,

h1

N

)
· vol BR

(
ri,

h2

N

)
≈ h1h2

N2
. (31)

And thus the mutual information is estimated by

I(R;S) ≈ 1

N

N∑
i=1

log2
N#[S(si, ri, h1/N, h2/N)]

h1h2
. (32)

The resolution of this model given by the h1 and h2 parameters needs to be chosen appropriately. If they are too
large the approximation given in equation 20 becomes less accurate due to the assumption that probability mass
function is constant in the ball. If they are made too small on the other hand the accuracy of estimates in equations
21 and 26, where the mean value is estimated by counting, is decreased.

It is important to note that when the two variables are independent the above equation gives an estimate of zero
as required by the definition of mutual information. This is because there is a probability equal to h1/N for each
of the h2 points in BR(ri, h2/N) to be also in BS(si, h1/N) which means that there are on average h1h2/N points
in S(si, ri, h1/N, h2/N), giving a probability estimate of one.

The same approach is applied to estimate the Kullback-Leibler diversion between the probability distributions of
two random variables taking values in the same metric space. This time however the distribution of the second
variable is used as a measure of the volume of the regions around instances of the first one. That is if M instances
are sampled from R and N - from S, then

d(R||S) ≈ 1

M

M∑
i=1

log2
pR(ri)

pS(ri)

≈ 1

M

M∑
i=1

log2
N#[B(ri, h/N ]

Mh

(33)

where B contains the h instances sampled from S that are closest to ri and #[B] gives the number of points sampled
from R falling in the ball. Measuring the Kullback-Leibler divergence between the joint and product distributions
of (s, r) pairs in a metric space X 2 in turn reduces to the formula for mutual information: setting the volume to
h1h2/N

2 for N samples, equation 33 reduces to equation 32.

The model aims to show that the Kozachenko-Leonenko approach for information estimation can be applied in
this simple form to sample spaces without coordinates. The problem that inspires it arises from the difficulty of
estimating information on electrophysiological data embedded in high-dimensional Euclidean spaces, but it can be
applied to a much broader range of context. If successful it could provide a framework for calculating information
shared between any variables taking values in a space where a suitable similarity metric is defined. In the next part
of this section the problem of assigning distance between spike trains is discussed and two state-of-the art solutions
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currently available are presented.

S

R

B(si ,ri ,h1/N,h2/N)

(ri ,si)

h1

h2

Figure 4: Probabilities are estimated in S ×R by counting the data points in region B, which is the cross-section
of the balls around si of volume h1

N and around ri of volume h2

N .

Spike-train metrics

Being able to compare neural activity patterns over time and across a population of neurons is of fundamental
importance to understanding the semantics of neural signalling. The spike-train metrics described in [21] provide
a principled approach to the problem. First, two methods for comparing pairs of spike trains from single neurons
are introduced, which are then extended to the comparison of spatio-temporal patterns of population activity. The
aim is to construct a mathematical framework for analysing neural coding - both in terms of firing rates and precise
spike timing.

The basic idea is to start with a very general geometric description of the space of spike trains, thereby allowing
for it to reflect their specific physiological properties and avoiding fitting them to an arbitrary standard which
may not be suitable. Indeed, although Euclidean vector spaces have proven to be very useful in many cases, spike
trains do not seem to comply with their rules. If every dimension represents a spike time for example, similar
spike trains with different number of spikes would have to be parametrized in different-dimensional spaces. There
is also no natural way for subtracting one spike train from another and no physiological motivation for assum-
ing that “adding” the same spike train to two spike trains preserves the distance between them. This is why the
space of spike trains is simply considered to be a metric space - one where distances between points can be measured.

Having said this, the first family of distances considered - the van Rossum kernel-based metrics [15], first map
spike trains into a vector space of functions and then use Euclidean distance to calculate the distance between
them. This method however avoids using a binning strategy to embed a spike train into a discrete vector space
with dimensionality given by spike- count or the number of bins. Instead, it maps a spike-train to a continuous
function by convolving it with a linear filter. This allows for the distance to be calculated directly using the L2-
norm metric for functions. And although if computed numerically this has the structure of Euclidean distance in
high-dimensional discrete vector space, such a space does not ever need to be used explicitly. The distance can be
solved analytically and taken as is, to form a metric space of spike trains.

Here the van Rossum metric with an exponential kernel is considered. This filter mimics the synaptic conductance
dynamics resulting from a spike. It expresses the idea that the distance between spike trains should reflect the
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Calculating mutual information in metric spaces

difference in their effect on other neurons by drawing a caricature of the effect of a spike on the synaptic conductivity.

A spike train u = {u1, u2, . . . , um} is mapped to a real function using a kernel h(t):

u 7→ f(t;u) =

m∑
i=1

h(t− ui), (34)

the kernel itself is defined as

h(t) =

{
0, t < 0
1
τ e

−t/τ , t ≥ 0
(35)

where τ is a time scale associated with the synapse. The distance between spike trains u and v is given by the L2

distance between the corresponding functions:

d(u,v; τ) =

√∫
dt[f(t;u)− f(t;v)]2 (36)

For the causal exponential filter this integral can be solved analytically [22] to express the distance as a summation
in terms of exponentials:

d(u,v; τ) =

√∑
i,j

e−|ui−uj |/τ +
∑
i,j

e−|vi−vj |/τ − 2
∑
i,j

e−|ui−vj |/τ . (37)

When an action potential arrives at a synapse it causes an abrupt rise in the conductivity of the post-synaptic
membrane. Eventually this results in a spike in the membrane potential of the post- synaptic neuron. This event
occurs on a time scale much smaller than the rest of neural electrodynamics, which is why it is modelled as
instantaneous:

f → f + δf. (38)

The increment δf depends on the scale chosen - it can be set to 1. After the spike has arrived the conductivity is
assumed to drop at a constant rate

τ
d

dt
f = −f (39)

hence the exponential decay. This construct can incorporate another aspect of synaptic conductance - its dynamics
when multiple spikes arrive within a short time interval. Since there is a great variety of synapses, the limit to
their conductance is variable too. In many synapses the arrival of a spike has a diminishing effect on subsequent
impulses arriving shortly after it. This can be modelled by adding an extra parameter but will not be discussed
here as it is not necessary for the purposes of this project.

The other family of spike-train distances is the one of edit-length metrics, exemplified by the Victor-Purpura metric
[7, 8]. As mentioned above this is similar in spirit to the Hamming distance used in string matching. In particular,
it defines the distance between two sequences of spikes as the cost of moulding one into the other. As a result, the
signals are not modelled by any intermediate representation and the distance can be computed directly given a pair
of spike trains following a set of rules.

The main concept associated with an edit-distance is a cost function defined in terms of a set of elementary steps,
each assigned a non-negative individual cost. In the context of strings of symbols over a finite alphabet this usually
includes the three basic operations - insertion, deletion and substitution. The total cost c(γ) of transforming one
sequence into another is thus given by the set of elementary steps that can be used to complete the task at a
minimal overall cost:

d(u,v) = min
γ

c(γ) (40)

As long as the cost of a step equals the cost of inverting it this distance is certainly symmetric. For the purposes
of comparing spike trains, the basic elementary step consists of inserting or deleting a spike and has a unit cost,
which sets a scale on the metric. This guarantees there is a finite distance between any pair of spike trains given
by replacing all spikes from one train with the spikes of another one, and equal to the sum of their lengths. In the
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Figure 5: (top, middle)Mapping spike trains to functions using the van Rossum metric with an exponential kernel.
(bottom) Subtracting one function from the other.

simple case of the Victor-Purpura “spike-time” metric, a second elementary step is added consisting of moving a
spike by some amount of δt. This step has a cost of qδt associated with it, where the parameter q determines the
cost per distance for moving a spike. This means that the cost of moving a spike cannot exceed the cost of deleting
it and inserting a new one at the desired position in time: qδt < 2, so the maximum distance by which any spike can
be moved to achieve minimum total cost is given by a time-scale of 2/q determining the sensitivity of the metric.

The problem of finding an optimal sequence of steps can addressed efficiently using a dynamic programming pro-
cedure:

Input: spike trains u of length m, v of length n
Output: d(u,v) = minγ c(γ)
G← array of size m× n
Gi,0 ← i for i ∈ [1,m], G0,j ← j for j ∈ [1, n]
for i← 2 to m do

for j ← 2 to n do
Gi,j ← min(Gi−1,j−1 + q|ui − vj |, Gi−1,j + 1, Gi, j − 1 + 1)

end

end
return Gm,n

Algorithm 1: Matching one spike-train to another at minimum cost

The above algorithm takes advantage of the properties of minimum cost-sequences which exclude inefficient steps
such as moving a spike from one train past a spike from the other, or making redundant moves in combination
with insertions or deletions. Every entry Gi,j denotes the distance between the sub-trains containing the first i
spikes from u and the first j spikes from v. At each step, the algorithm considers the last spikes from the respective
sub-trains and makes a minimum-cost choice among three possibilities: 1) matching the two spike trains, 2) deleting
the last spike from one train, or 3) inserting a new spike into it matching the last one of the other. In this way the
dynamic programming paradigm is applied - avoiding recursion by storing the results from previous computations
and building the final result from the bottom up.

Both the kernel-based van Rossum metric and the edit-length Victor-Purpura metrics can be extended to compare
population activity by extending the domain in which spikes occur with another variable apart from time - the
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“neuron of origin”. This involves adapting each of them in specific ways reflecting their mathematical properties,
but abstracting away from these details an important parallel can be drawn between multi neuronal metrics and
another similarity measure used in image analysis - theEarth Mover Distance [12]. The concept is that an image,
represented by a histogram is thought of as a 3D terrain, and the similarity between it and another image is mea-
sured in terms of the labour - volume×distance, required to match one terrain to the other. In order to do so
a cost function is defined consisting of elementary steps for moving adding and subtracting mass. This approach
can in turn be extended to incorporate higher-dimensional objects such as video, volumetric images or functional
data. The cost for moving events does not need to be dimension-invariant in any of these cases nor does it need
to reflect Euclidean distances. This example aims to show that alternative metrics can be used in many contexts
and methods for estimating probability and information quantities in the spaces they give rise to can be useful to
various applications.

The two types of spike-train similarity measures described above have very different mathematical structures but
they are both quite successful in capturing the differences between neural activities in terms of their effects on
other neurons. One of the ways this is tested and verified is by examining their performance when used to cluster
together spike trains elicited in response to the same stimulus. Interestingly, regardless of their distinct properties
the kernel-based and edit-length metrics perform very similarly on this task. This can be explained by noting that
under certain settings the metrics themselves treat spike trains in an analogous fashion. These will not be discussed
here - instead the variants introduced will both be used to test the information estimator in order to verify its
validity and test its performance in metric spaces with varied underlying structure.

The next and final section of this chapter explores the general physiological properties of nerve cells and the mecha-
nisms they use to connect and interact in the nervous system, along with the mathematical models used to describe
them relevant to this project. It does not aim to encompass the full picture of their neurological understanding,
but rather to motivate the computational model used to implement a simulation of a network of spiking neurons
in software. This network will serve as the basis of an environment for configuring experiments that generate
spike-train data which will be used to test the mutual information estimator.

1.3 Scientific and technical aspects

Dendrites

Cell body

Axon

Nerve
ending

Figure 6: Simple diagram of a neuron from Wikimedia Commons.

The nerve cell

The nerve cell, or neuron, is arguably one of the most interesting and important cells found in the bodies of nearly
all animals. It is absent only in a few very simple multicellular organisms such as sponges. Together with the glial
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cells (Greek for glue), which support them structurally and metabolically, they constitute the nervous systems that
govern the activity of organisms. This is accomplished through the communication and processing of information
in the form of electrical signals transmitted between neurons connected in networks.

Morphologically the neuron can be seen as being comprised of three main components. Through the dendrites,
signals are received by the cell body, or soma, which processes them and in turn transmits a signal along the axon
reaching out of it towards other cells. The characterising property of neurons is that they are electrically excitable
by other neurons. Most commonly, they connect to each other via chemical synapses mediating electrical charges
between their axons and dendrites. In this context neurons are distinguished as pre-synaptic and post-synaptic.
There are two types of synapses: excitatory - making the post-synaptic neuron more likely to signal, and inhibitory
- suppressing its signalling.

An electric impulse is elicited by the nerve cell when the potential difference across its membrane exceeds a certain
threshold - typically around −55 mV. When the cell is at rest, the electric potential inside is lower than the potential
outside of it. The potential difference is referred to as membrane potential, amounting to about −70 mV when at
ease. This state is actively maintained by ion pumps - mechanised protein channels moving electrically charged
particles across the membrane of the cell using energy. An ubiquitous example is the sodium-potassium adenosine
triphosphatase enzyme. It pumps three positively charged sodium (Na+) ions out of the cell for every two positive
potassium (K+) ions it pumps inwards, resulting in a loss of one atomic charge per pumping cycle. In this way
potassium is concentrated inside the soma whereas sodium is pushed out. The negative voltage equilibrium is a
result of this saturation. The random thermal motion of potassium ions causes them to diffuse outwards despite of
the lower potential inside the cell body, which on the other hand attracts sodium. It takes the reciprocal activity
of the ion pumps to counteract this force and compensate for the leak of charge.

A neuron can be either excitatory or inhibitory in the sense that as a pre-synaptic neuron it can form either only
excitatory or only inhibitory synapses to other, post-synaptic neurons. Chemical synapses work by virtue of the
release of substances called neurotransmitters from the terminal of the axon of the pre-synaptic neuron due to the
arrival of an electrical impulse. The released neurotransmitter fits like a key in a lock into binding sites called
receptors situated in the dendrites of the post-synaptic neuron. The receptors open up specialised ligand-gated ion
channels and allow ions through the membrane of the post-synaptic neuron for a short time period. Depending
on the type of the synapse and of the ion channels this leads to a small increase or decrease in its membrane potential.

When the voltage reaches its threshold value this activates the opening of yet another type of ion channels allowing
an abrupt influx of sodium inside the cell during a narrow time window - 1–2 [ms]. This produces a non-linear
cascade in the membrane potential called an action potential or spike. This impulse then propagates through the
axon, being continuously amplified in the same fashion by the opening and closing of voltage-gated channels along
its length.

The story given here abstracts away many details important to an accurate biological and physical description of
the nerve cell and how it works. Nevertheless it is sufficient to give an outline of the behaviour of neural voltage
dynamics for the purposes of the mathematical model used to describe it introduced below.

The leaky integrate and fire model

In this project a variant of what is known as the leaky integrate and fire model [1] is used to simulate the behaviour
of spiking neurons wired together in a network. This simplified model represents the voltage dynamics of a neuron
as a first-order ordinary differential equation. An intuitive analogy can be made between this equation and a similar
one giving a simple model for the rate of change in the height of water in a leaky bucket that is being continuously
filled from the top.

The basic idea is that the rate l at which water leaks out is proportional to the height h of the water inside the
bucket as it determines the pressure at its bottom. Assume for simplicity that l also depends on a single constant
G, reflecting the size of a hole on the bottom and some other physical factors. The relationship between the two is
expressed as

l = Gh. (41)

13



Calculating mutual information in metric spaces

Let i denote the rate at which water pours into the bucket and C - the area of the base (the sides of the bucket are
considered to be straight). The rate of change of the volume of water contained in the bucket is then

dCh

dt
= i−Gh (42)

and consequently the rate of change of its height is

dh

dt
=

1

C
(i−Gh). (43)

The height is used as an analogue for the voltage - greater height/voltage means greater difference in pressure/po-
tential between the the two ends of the water-column/cell-membrane. In the model for the membrane potential the
cross-sectional area of the bucket C is replaced by the electric capacitance of the membrane Cm and G is substituted
with Gm - the conductance of the membrane. As mentioned above the equilibrium voltage at which there is zero
current leaking through the membrane equals −70 mV and is actively maintained by the sodium- potassium pumps
- this is called the reversal potential of the membrane, denoted EL. The leak current out of the cell is then given
by Ohm’s law as Gm(V − EL). Equation 42 is thus rewritten as

dCmV

dt
= I −Gm(V − EL) (44)

where I is the input current. In the original experiment by Lapicque [1] this is injected directly into the cell with
an electrode - usually denoted Ie, but it could also stand for currents coming in through the synapses. Usually the
equation is divided across by the conductance. The resistance is then denoted Rm = 1/Gm and τm = Cm/Gm gives
a time scale for the membrane:

τm
dV

dt
= EL − V +RmI. (45)

This equation does not model the non-linear effect of the voltage reaching the threshold of about −55 mV which
produces the spike. This is accounted for in a more detailed equation given by the Hodgkin Huxley model [3]
which includes terms for the currents due to the opening and closing of the voltage-gated channels. However, since
the time-scale at which these non-linear dynamics occur is very narrow compared to the rest of the process, they
can be modelled as occurring instantaneously. The equation will not be solved analytically but rather integrated
numerically at discrete time steps in software using an approximation technique. Therefore a spike can be added
by hand by setting the voltage to a value above zero once the threshold is reached and then immediately resetting
it to to a value near the rest point of −70 mV. In fact, for the purposes of estimating information in spike trains,
spikes will not even need be added but just recorded before V is reset.

The strategy described above for simulating neuronal activity numerically on a computer makes it easier to solve
the model for a variable input current due to the synapses. The synaptic current is the last ingredient left to define
in order to complete the model so that it can be used to simulate the dynamics of a population of integrate and
fire neurons interacting together in a network. It will be modelled by the following equation

Is(t) = gss(t)(Es − V ) (46)

where Es is the reversal potential of the synapse and gss(t), later also denoted Gs, is the conductance at the synapse
- gs describes the synaptic strength, and s(t) models the opening and closing of the ligand-gated channels due to
the arrival of a spike:

s(t) = Gmaxe
−t/τs (47)

where ts is the time since the pre-synaptic neuron’s last spike, τs is the time-scale of the synapse, and Gmax is
a constant used to control the scale of the conductance. The exponential decay models the unbinding of neuro-
transmitter which closes the ligand-gated channels after they open. In a model that strives for accuracy Gmax can
be replaced by t, but here it is assumed that the gates open instantaneously and the control parameter serves the
purpose of tuning the simulation.

The full equation for the voltage can now be given as

τm
dV

dt
= EL − V +RmIe +Rm

N∑
i=1

Is(t, i) (48)
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for a neuron with N pre-synaptic neurons connected to it. The constant input current Ie is optional and can be
used to stimulate particular neurons or just to stabilise the network.

Numerical methods

The technique used to compute a numerical solution to the membrane potential equation is known as the Runge-
Kutta method [6]. It is based on the Taylor series expansion of a function around a point t0:

f(t) =

∞∑
i=0

1

n!

dnf

dtn

∣∣∣∣
t=t0

(t− t0)
n. (49)

This gives an iterative method for efficiently solving a differential equation of the form

df(t)

dt
= F (f, t) (50)

to some approximation by expanding f around discrete time-steps split by some small interval δt, up to a term of
some order N . In other words f(t+ δt) can be worked out from f(t) by using its derivative F :

f(t+ δt) = f(t) + F (f, t)δt+
1

2
F ′(f, t)δt2 +O(δt3). (51)

The simplest way to go about this is to ignore the δt2 and smaller terms - this is known as the Euler method.
Sometimes one might expect that the errors would have different signs and cancel often enough to give a good ap-
proximation. However this is not always the case - they might add and the O(δt2) error could cause a considerable
offset. The Runge-Kutta methods address this issue by considering a number of different Taylor expansions so that
the termsδt2 and smaller cancel. The most common version is the classical Runge- Kutta fourth order method
known as “Num.recepies.in.C”:

Given an initial condition f(t0) let

tn = t0 + nδt

fn = f(tn)
(52)

then define the following four coefficients

k1 = δtF (fn, tn)

k2 = δtF (fn + k1/2, tn + δt/2)

k3 = δtF (fn + k2/2, tn + δt/2)

k4 = δtF (fn + k3, tn + δt)

(53)

finally, compute the value of f at time tn+1 as

fn+1 = fn +
1

6
(k1 + 2k2 + 2k3 + k4). (54)

The ki coefficients are increments based on estimates of the slope of the function at different points through interval
of length δt. The weighted average of the four of them is taken ensuring the error is O(δt5) without explicitly
computing higher-order derivatives of f . This approximation gives a considerable performance improvement over
the Euler method and provides good enough precision for exploring neural voltage dynamics computationally.

Poisson neurons

In a real situation, timing between successful action potentials elicited by neurons from many parts of the brain ap-
pears to be very irregular under a wide variety of circumstances. It is even often observed that spike trains produced
in response to the same stimulus over consecutive trials although similar would vary considerably both in terms
of their firing rates and spike times [13]. This is due to noise propagating through networks of deep connectivity,
but consequently it is sometimes reasonable use a stochastic model for generating fictive spiking behaviour. In the
previous section a recipe for simulating a spiking neuron has been introduced but such a neuron needs variable
input in order to exhibit interesting firing behaviour. Instead of constructing complex networks or encoding this
variability explicitly in the external stimulation current, it is useful to be able to generate the spiking of some of the
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neurons in a network as random sequences with some average firing rate. In this way they can be used to provide
input to others simulated using the physiologically inspired model.

In theoretical neuroscientific the problem of estimating the probability that a particular spike train occurs arises
from the need to model the relationship between a stimulus and a response. The total number of possible spike
sequences over a meaningful time interval is usually excessively large so estimating the probability of each one is
infeasible. Therefore a statistical model based on a limited set of observed responses is needed to estimate their
probability distribution. This is typically done in an attempt to predict the stimulus that produced a given response
or to quantify the probability of the response itself occurring.

Since spikes are considered to be stereotyped events proceeding at a very tight time-scale, they are idealised as oc-
curring instantaneously - an assumption that has been at work throughout this exposition by the sheer use of spike
trains. For a time bin, small enough to ensure there can be no more than one spike occurring in it, the probability
of a spike can be determined by the firing rate of the neuron. This statistic is generally not sufficient to predict
the probability of a spike train because the joint probability of two spikes occurring in particular time-slots is not
necessary equal to the product of their individual probabilities of doing so. In fact, in many situations there is some
dependence - for example if one spike follows closely after another it is quite likely that presence of one influences
the occurrence of the other. Having said this, if action potentials are assumed to be statistically independent then
the firing rate can indeed be used to estimate the probability of any given sequence of spikes.

A stochastic process generating a sequence of events such that there is no dependence between an event and the
history of preceding events is called a Poisson process. If the probability of an individual event occurring is invari-
able the process is said to be a homogeneous Poisson process. This kind of process provides an extremely useful
model for irregular neuron firing. Below a formal definition is given based on the description in [13], followed by a
simple procedure for generating Poisson spike trains on a computer that is used in the implementation part of the
project.

Let r(i) = ρ be a constant equal to the average spike-rate of the nerve cell. T will denote the length of the time
period which is broken up into M bins of length δt = T/M . The probability of a spike occurring in a specific bin is
then ρδt. Because the spikes are believed to occur independently at equal probability, the probability P [t1, t2, ..., tn]
that an ordered sequence of n spikes occurs over T with spike i falling between ti + δt can be expressed in terms of
the probability PT [n] that any sequence of n spikes occurs in that period:

P [t1, t2, ..., tn] = n!PT [n]

(
δt

T

)n

(55)

n! gives the number of ways to order the spikes and the (δt/T )n factor arises from the probability density of the n
spike times being multiplied by the width of the time bins. PT [n] is given by

PT [n] = lim
δt→0

(
M

n

)
(ρδt)n(1− ρδt)M−n. (56)

The binomial expansion is the same as the one used in equation 18 - the combination
(
M
n

)
= M !/n!(M − n)! gives

the number of ways to pick the bins with spikes in them, (ρδt)n is the probability of n spikes occurring in n specific
bins and (1 − ρδt)M−n is the probability of not having spikes in the remaining M − n bins. Here this is taken at
the limit of δt → 0 reflecting assumption that the bins are small enough to avoid collisions between spikes. As a
result M grows without a bound and M − n ≈M = T/δt for a fixed n. Using this approximation

lim
δt→0

(1− ρδt)M−n = lim
δt→0

((1 + ϵ)1/ϵ)−ρT = e−ρT (57)

where ϵ = −ρδt and e = exp(1) = limδt→0(1 + ϵ)1/ϵ by the definition of Euler’s constant in series form. Then for a
large enough M another approximation can be made:

M !/(M − n)! ≈Mn = (T/δt)n (58)

to give the formula for the Poisson distribution:

PT [n] =
(ρT )n

n!
e−ρT . (59)
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Figure 7: (left) The probability that a homogeneous Poisson process generates n spikes in a period T plotted for
n = 0, 1, 2, and 5 generalised as function of ρT to apply for any rate; (right) The probability of n spikes occurring
for ρT = 10 (dots) compared with a Gaussian distribution with mean and variance equal to 10 (line). The figure
is from [13].

figure 5 on the left shows this plotted for different values of n as a function of ρT in order to apply for any value of
the constant rate. The larger the number of spikes n is the longer T needs to grow in order for it to reach its max-
imum, i.e. The longer T is the more likely it becomes to have more spikes occurring. On the right the probability
mass function over possible numbers of spikes in is plotted showing that it matches a normal distribution around
the expected fire rate.

Now a simple procedure for generating spike trains from a Poisson distribution can be devised using that the
estimated probability of firing a spike within an interval of length δt is ρδt. As the program progresses through
time steps a random number between zero and one is generated every time. If the probability of a spike is higher
than that number the time is recorded and added to the spike train. The pseudocode for this is given below. This
approach can be used even if the fire rate r(t) is not estimated by a constant but depends on time, as long as it
varies slowly with respect to the time bin δt.

Input: time period T , step length δt, expected firing rate ρ
Output: spike train u, spike count c
u← [ ]
for i← 1 to T/δt do

xrand ← rand(0, 1)
if ρδt > xrand then

u← u ∪ [iδt]
c← c+ 1

end

end
return u, c

Algorithm 2: Generating a Poisson neuron

This concludes the introductory part. We now have all the necessary components to build a model experiment
for testing the formula. The next Chapter describes the experimental conditions simulated in software to generate
spike-train data for the model estimator. This is followed by a documentation of the Python implementation of a
simulation environment consisting of a spiking neural network, two spike-train metric measurements, the mutual
information estimator and the experimental procedures. This produces fictive data using a deterministic neural
model that captures only the essential principle of the real biophysical process. However, the level of abstraction is
sufficient to guarantee statistical relationships between spike train data analogous to the ones expected to be seen
in a real situation. The results form the conducted trials are then discussed and analysed in Chapter four.
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2 Testing the model

2.1 Idea

Information theory establishes a relationship between the informativeness and the probability distribution of the
outcomes of random variables. It extends our understanding about the meaning of structure in signals by enabling
us to measure how useful a piece of information is based on how likely we are to observe it. The concept of a random
variable itself, which in spite of its misleading name serves as a baseline mathematical model for real processes,
is better understood by extending the methods of probability theory and statistics with the ones of information
theory. The main motivation for applying information theoretic analysis to neuroscientific data is quantifying the
relationship between a stimulus and a response.

The estimation problem left aside, we are interested in measuring the information carried in a spike-train response
about a given stimulus. The stimulus can be the spiking of a pre-synaptic neuron or it can be represented by
a discrete variable modelling some experimental condition. Effectively, we would like to separate the structure,
or “randomness”, contained in spike-train responses that is directly influenced by a specific stimulus from other
content, which may be due to other stimuli or noise propagating through the network. This is exactly what mutual
information (MI) measures. As seen in equation 15, mutual information can be thought of as the uncertainty
associated with one variable taking away what would be left of it if the other variable were known. In other words,
it measures the information content present in a variable due to its relationship with another variable. This in-
formation measurement has no dependency on the actual values the variable takes or any statistic associated with
them. It is rather a statistic of the minimum coding length needed to capture their improbability and as such is a
direct result of their probability distribution.

In order to test an information estimator using just a computer we want to design a computational model generating
multiple random variables related in a predefined way. We would then make a hypothesis about the expression
of this relationship in terms of mutual information and make the respective measurements using the formula in
question. Combining the framework of computational neuroscience with the spike-train metrics approach we can
investigate the performance of the metric-space model for mutual information in the context of neural spike trains
and check if the results match our hypothesis. The kind of data which is collected from electrophysological experi-
ments with neurons can be mimicked by simulating some neurons using the integrate-and-fire model while feeding
them randomly generated pre-synaptic spiking with firing rates coming from a Poisson distribution. As outlined
above the spike trains generated using the Poisson model imitate neural activity resulting from the rich connectivity
observed in many real neural networks.

To produce the desired statistical relationships we create an artificial neural network incorporating both types of
neuron models. By simulating the network’s voltage dynamics over a series of trials under the same experimental
conditions, we generate sample sets of the spike-train variables modelled by its comprising neurons. We then apply
the metric-space method for mutual information estimation, which relies on nearest-neighbour statistics between
spike-trains in each of these sets. Finally, we repeat this process while varying certain experimental parameters so
we can observe the resulting tendencies in the variation of the mutual information estimates and compare them to
our expectations.

2.2 Experimental network set-up

Abstracting away implementation details we first define the experimental conditions to be simulated. We start by
choosing a simple network topology which enables us to clearly establish the relationships between the spike trains
that will be produced by individual neurons. This way we can predict the effect of these relationships on the mutual
information to be measured.

The voltage dynamics of integrate-and-fire (IF) neurons, as modelled by equation 48, depend on two input compo-
nents. On one hand, we have the constant current Ie, modelling stimulation through an electrode injected directly
into the soma. This current causes simple rhythmic spiking provided it is high enough. On the other hand, there is
the combination of synaptic currents, which at any given time depend strictly on the spiking times of pre-synaptic
neurons - our stimuli. The sets of spiking patterns elicited by the stimuli need to contain some kind of “randomness”
to ensure that the observed information propagation between them and the responses is representative of the general
case. This is where the Poisson model comes in, enabling us to generate diverse pre-synaptic spiking. Furthermore,
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Chapter 2 TESTING THE MODEL

each of the simulated neurons should process spiking from multiple sources so that there is some extra structure in
its response. The mutual information estimator must be able to distinguish between the two influences.

Figure 8: The experimental network layout

The simple network connectivity used in the experiments, displayed in figure 8, is chosen to fit the above require-

ments. We have two Poisson neurons, labelled 2 and 3 , which spike randomly with predefined average firing
rates. These mean rates will be chosen randomly from a range of possible values but we will get back to this again.
The important point is that the produced spike trains will be different and completely independent from each other

every time. We also have neurons 0 and 1 , whose membrane potential will be simulated numerically with the
leaky integrate and fire model. The two Poisson neurons synapt to each of the two simulated neurons. This means
that as the simulation proceeds their spiking times affect the synaptic conductance of IF neurons, and hence their
voltage dynamics. We will be simulating excitatory synapses throughout. The synaptic conductivity - that is the
porousness of the post-synaptic membrane - will depend on the strength of the synaptic connection, labelled with

g in the figure above for synapses 2 → 0 and 3 → 1 . This parameter takes values in the interval (0, 1] and

the connection strength for synapses 2 → 1 and 3 → 0 is set to g’s complement to one: g2,1 = g3,0 = 1− g.
Thus the effects of the two stimuli are in a kind of contra-proportional relation whereby increasing one of them we
decrease the other. An analogous relation must be exhibited between the respective mutual information measure-
ments for the model estimator to pass our validity test.

2.3 Experiment 1: Mutual information vs. synapse strength

This is the core test we are interested in conducting. We step up g and, as we progress, at each step we simulate
the experimental network multiple times in order to generate four spike-train sample sets. Treating the spike trains
recorded from each neuron as a separate metric-space variable we apply the mutual information estimator pairwise
using one of the two spike-train metrics presented in Chapter 1.2. That is, for each connectivity strength, we
calculate the MI between Poisson-generated stimuli and IF-simulated responses, as well as across - between pairs
of neurons of the same type. Now, the stimuli are generated using a pseudo-random number facility on a computer,
following the procedure given in algorithm 2. The average rate is also chosen uniformly from a small range for
every new spike train generated independently by each of the two Poisson neurons at each simulation trial for every
value of g, varying between zero and one. Therefore we can expect the proximity between the generated stimuli
in the space of spike trains to be somewhat uniformly distributed across some region. The key point is that the
responses of IF neurons are related to the stimuli. Consequently, the proximity between them would also contain
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some randomness, but more importantly similar stimuli will be close together and the same will be true about the
similar responses to them. This is the statistical property that the estimator at hand exploits.

There are several parameters that need setting. Let T# denote the number of simulation trials per experimental
phase (synapse strength step). This number needs to be large enough for the estimates to be meaningful. The sizes
of open balls determined by the h1 and h2 parameters in the model estimator need to be chosen in accordance with
T#. The volumes must be small enough for the constant probability mass assumption to be valid for the balls, but
large enough to provide representative statistics for estimating densities. The developed software implements the
experiment in a generic way so that it can be used to simulate it with any valid settings configuration. We also need
to set a resolution in the independent variable - the synaptic strength g = g2,0 = g3,1. Let G denote the number
of sample points of g over (0, 1], that the pairwise mutual information will be calculated for. A higher sampling
rate on g will make the analysis of the relationship between MI and connection strength more accurate and less
susceptible to noise and outliers. In addition, we have the simulation parameters associated with the modelled
neurons. Here we use some standard settings for the IF neurons and introduce some randomness to their initial
states and to the fire rates of Poisson neurons as discussed earlier.

We now devise the exact procedure followed for conducting this experiment. A control flow diagram is given in figure
9 below. This is a hight-level description of the underlying simulation process, focusing on the recipe for conducting
the experiment and not on its ingredients. Most of the experimental parameters, listed in the initialisation block,
are represented by their symbolic identifiers - they can be experimented with further. Below them are listed the
standard numeric settings for IF neurons used throughout the tests. The chosen network topology is used as an
example. We iterate through the range of values of g, at each step updating the connectivity matrix, producing new
sets of T# spike-train samples from each neuron, and calculating the pairwise mutual information between them.
As we go along we collect some statistics on the MI estimates. We are interested in investigating the relationship
of the mutual information of the signals of two neurons to the strength of the synaptic connection between them.
Our hypothesis is that MI estimates will increase linearly as the synapse strengthens. Therefore we would like to
measure the linear correlation between the two and hence we compute the Pearson product-moment coefficient :

ρMI,g =
cov(MI, g)

σMIσg
=

E[(MI − E[MI])(g − E[g])]√
E[(MI − E[MI])2]

√
E[(g − E[g])2]

=
E[MIg]− E[MI]E[g]√

E[MI2]− E[MI]2
√

E[g2]− E[g]2

(60)

To calculate the expected values involved in the last expression we sum up the respective quantities as we proceed
through the experimental phases, and normalise them in the end. This coefficient measures how closely the rela-
tionship of the two variables resembles a straight line - its magnitude reflects the slope too and its sign determines
the direction of the relationship. If the correlation coefficient is positive - ρ ∈ (0,+1] - reflecting positive covariance,
then there is a positive linear relationship between the two variables - they grow together. If there is negative cor-
relation between the variables - ρ ∈ [−1, 0) - then one of them decreases as the other grows. If ρ = ±1 there is total
correlation between the variables meaning the sampled points must lay on the same line. Zero correlation means
there is no linear relationship - the variables could potentially be independent or there could be some symmetric
structure to their relationship.

We are also interested in modelling and graphically depicting the general tendency of this hypothetical linear rela-
tionship. To estimate MI as a linear function of g we find the line which minimises the deviations of the calculated
data points. This is also known as the least-squares method for linear regression. We have collected mutual infor-
mation measurements at G synapse-strength sample points and would like to find a line M̂I = â+ b̂ · g minimising
the sum of squared residuals

∑G
i=1(MIi − (a + bgi))

2. In order to estimate the slope b̂ and the intersect â we
take the partial derivatives of this expression with respect to b and a and set them to zero. As a consequence∑G

i=1(MIi − (â+ b̂gi)) = G(M̄I − â− b̂ḡ) = 0 which is an appealing result. This method actually does not handle
errors in the data very well, but it is good enough to help us draw a basic picture of the correlation. Although we
try to have some noise in the simulation, we are still not dealing with real signals here. Assuming everything works
as intended and given a high-enough resolution on the model, we are not expecting significant outliers in the MI
estimates. The slope of the line is not too important to us here, nor is the intersect, since they are scale-dependent.
The regression line can be thought of as a way to predict the value of the mutual information estimate, for a given
synapse strength g with minimum error on average.
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Experiment parameters:

G := #connection-strength steps; gs = 1 := step index;

T# := #simulation trials; t = 0 := trial index;

Ts = 1 := single simulation time period [s]; δt = 0.001 := simulation time step;

h1=h2 := #nearest neighbours per ball; IF = 2 := #IF neurons;

rmin, rmax := mean Poisson fire-rate limits; P = 2 := #Poisson neurons;

C := N ×N weighted connectivity matrix; N = IF + P = 4 := #neurons;

IF neurons parameters:

El = −70 := reverse membrane potential [mV ]; Vth = −54 := spiking threshold [mV ];

Rm = 1 := membrane resistance [MΩ]; Vres = −80 := reset potential [mV ];

τm = 0.03 := membrane time constant [s]; Ie = 1.8 := constant current [nA];

gs ≤ G

update connection strength: g := gs/G; C :=


0 0 0 0

0 0 0 0

g 1− g 0 0

1− g g 0 0

;

t < T#

initialise IF IF neurons with potentials in U [Vres, Vth] and last-spike times in U [−τm, 0];
initialise P Poisson spike trains with average firing rates in U [rmin, rmax];
simulate network and store spike-train results in sample sets;
increment t;

group spike trains from generated sample sets by source neuron;
calculate and store pairwise MIu,v for current g step;
collect statistics on MIu,v for calculating correlation (µ(MIu,v), µ(MI2u,v), µ(MIu,v ∗ g));
increment gs;

calculate Pearson correlation coefficient ρ between gu,v and MIu,v;
calculate the least-squares regression line of the MIu,v vs. gu,v data points;

plot MIu,v vs. gu,v on separate and common plots;
plot the regression line and print µ(MIu,v) and ρ(MIu,v, gu,v) in the legend;

True

False

True

False

Figure 9: Flow diagram of Experiment 1.

This experiment enables us to test whether the estimator captures the variation in mutual information as the rela-
tionship between the variables changes. Since we have no analytic way of calculating the true underlying quantities
of information, we use the synapse strength as a proxy independent variable that puts them into context with our
estimates. Although the function we are approximating is unknown, we have an intuition about its linear behaviour,
due to our knowledge of the relationship being measured and how it varies. Therefore we measure the correlation
and fit a line into the data to investigate the hypothetical linear relationship. There are two different approaches
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to estimating mutual information in the space of spike trains. Both the traditional time-binning procedure [11] and
the investigated metric-space technique are only approximations of the real mutual information. We are not going
to compare them here because they are principally different. The binning method needs to work at millisecond
resolution to be accurate and would only be feasible to compute on very short spike trains (20 − 50[ms]). The
scale of this experiment is set to 1[s] per network simulation and the average spiking rates of Poisson stimuli are
in range (10 − 50) in order to capture the information propagation in a very simple network. Ideally the two
methods should converge to the ground truth as sample sizes increase. This can be tested through further, more
elaborate investigation. However, as long as the estimator captures the linear relationship between MI and g, we
can rely on its validity and correctness. Through the simple linear relationship we measure its relative accuracy and
performance using correlation analysis. Good performance on this test still leaves margin for error but it narrows
it down to bias and systematic error. This will be sufficient for the purposes of this essay.

2.4 Experiment 2: Mutual information vs. stimulus delay

This is another example of an experiment where we vary the relationship between the two spike-train variables
in a predictable way and examine the resulting variation in mutual information estimates. This time, instead of
altering an experimental condition, we meddle with the spike trains themselves. They are shifted by adding or
subtracting a delay period from their comprising spike times while preserving the original time scope. This is done
for a set of delay periods in a symmetric range around zero. We start by first generating the spike-train data sets
from the four neurons multiple times. The process is repeated over a number of rounds R# in order to estimate
mutual information multiple times at each delay step and observe how the average varies with the delay. We iterate
through the delay points using the same sample sets to estimate MI but setting a different delay to the originally
produced Poisson spike-train they contain. Optionally a specific delay can be added to the original Poisson spike
trains in advance. This does not change the experiment in an essential way since the spikes lost through that shift
would not be recovered by the iterative shifting afterwards and hence a zero delay is always expected to reflect
maximum mutual dependency between the two spike-train variables in question.

We apply the estimator R# times at each delay and calculate the mean µ and standard deviation σ of these esti-
mates every time. Like in the previous experiment, the initial states of IF neurons and the average firing rates of
Poisson neurons are chosen stochastically for every single simulation. We use the same network topology and the
synapse strengths are reciprocal like in Experiment 1, but this time they are kept constant - g2,0 = g3,1 = g = 0.9
and g21 = g3,0 = 1− g = 0.1. We will only be interested in measuring the relationship between neurons connected
by the strong synapses. There will be variation in the MI estimates at each delay step resulting form the different
independent data sets used to produce them. This ensures that the results are representative of the estimator’s
performance on average but makes them noisy too. We therefore use the mean and standard error statistics to
capture the general tendency in the change of mutual information over stimulus delay.

The aim of this experiment is to test the model estimator’s sensitivity to the synchronisation of related signals.
While the nature and scale of the original relationship is kept the same, the causality it contains is distorted lin-
early in order to examine whether this is reflected in the estimated mutual information. The exhibition of such
a property will further validate the model. In the context of neuroscience, delays between stimuli and responses
can be important and sometimes characteristic of the source of neural activity. However, delays between related
signals can occur in many other signal-processing contexts and mutual information can be a used for detecting them
comparatively and quantifying their effect. We expect the average MI estimates to increase as the negative delay
increases towards zero and to then decay as the delay grows in the positive direction.

The control flow diagram below gives a schematic description of the procedure followed for conducting the exper-
iment. Again, the low-level simulation details are abstracted away in favour of the algorithmic structure of the
process. The neuron simulation settings are the same as in the first experiment, and analogously the parameters de-
termining the resolution of the experiment are represented by their identifier as they can vary. The implementation
details and the exact settings used for running the tests follow in the two subsequent Chapters.
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Experiment parameters:

R# := #MI estimation rounds; T# := #simulation trials;

Ts = 1 := single simulation time period [s]; δt = 0.001 := simulation time step;

h1=h2 := #nearest neighbours per ball; IF = 2 := #IF neurons;

rmin, rmax := mean Poisson fire-rate limits; P = 2 := #Poisson neurons;

El = −70 := reverse membrane potential [mV ]; Vth = −54 := spiking threshold [mV ];

Rm = 1 := membrane resistance [MΩ]; Vres = −80 := reset potential [mV ];

τm = 0.03 := membrane time constant [s]; Ie = 1.8 := constant current [nA];

Network connectivity: g := 0.9; C :=


0 0 0 0

0 0 0 0

g 1− g 0 0

1− g g 0 0

;

r < R#

t < T#

initialise IF IF neurons with potentials in U [Vres, Vth] and last-spike times in U [−τm, 0];
initialise P Poisson spike trains with average firing rates in U [rmin, rmax];
simulate network and store spike-train results in sample sets; increment t;

store sample sets from current round; increment r;

−∆d < d < +∆d

r < R#

delay the original Poisson spike trains from round r by d;
calculate and store pairwise MI collecting statistics; increment r;

store MI estimates at delay d; calculate statistics (µ(MIu,v), σ(MIu,v)); increment d;

plot MIu,v vs. d with markers for the standard deviation;

True

False

True

False

True

False

True

False

Figure 10: Flow diagram of Experiment 2.

2.5 Reverse engineering the network

Reverse engineering or network inference is the task of predicting links between variables by analysing their rela-
tionship based on a set of data. This is an open problem appearing in many fields of science. It is of significant
importance to chemistry, bioinformatics and systems biology in particular - for the reconstruction of the underlying
structure of gene regulatory, metabolic and cell signalling networks [26]. Research on how changes in these networks
affect information transmission has led to the development of rigorous frameworks for addressing the problem using
the tools of information theory. While many of these methods are ad hoc - tailored to a specific type of network,
exploiting limiting assumptions - there is also a number of principled approaches addressing the problem in its gen-
eral form. This implies that no assumptions about the structure of the variables and the nature of their relationship
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Figure 11

are made. In order to deduce connections using only the statistical features of the data, many of these strategies
use mutual information to measure the mutual dependence between variables. There is no best method for tackling
this problem and most solutions do not achieve high prediction accuracies, but for small enough networks with
simple topologies they can be applied with some success.

In our case, the strength of the synapse between two neurons should be proportional to the estimated mutual
information between their signals. In this context MI directly suggests itself as a tool for network inference. If the
estimates are accurate we should be able to use them to reconstruct the connections between the four neurons in
the experimental network and possibly deduce their relative strengths and directions. We will explore some of the
basic principles that can be applied to accomplish this goal.

A review of information-theoretic network inference methods [24, 26], suggests two main approaches to the problem.
The Entropy Metric Construction (EMC) method, later extended with the Entropy Reduction Technique (ERT)
[10, 14], designed for reverse engineering chemical reaction mechanisms, are based on entropy estimates that we
are not interested in in the course of this project. They use mutual information as a distance measure and infer
connectivity by minimising the conditional entropy between variables. There is also a CMC - equivalent to EMC
but based on correlation. The second approach to reconstructing connections between variables is based on their
mutual information and the Data Processing Inequality (DPI) discussed in Chapter one. The ARACNE method
[19, 20] applies the DPI to distinguish between direct and indirect interactions. It narrows down to removing
the minimum-pairwise-MI edge from each possible triplet of variables with pairwise mutual information above a
a certain threshold. There are also extensions of this method considering higher-order indirect interactions and
particular types of networks in the context of bioinformatics.

Here we will not be making a scientific inquiry of network inference methods but rather remain interested in exam-
ining how indicative the MI estimates obtained using the metric-space formula are of the underlying neural network
topology. We will therefore limit our efforts to simply applying DPI in the spirit of ARACNE along with some
basic logical inference based on very general assumptions. In order to do this we will first need to generate some
experimental results. The observations made on the inference task will be documented along with them in Chapter 4.

24



3 Implementation

3.1 Overview

The implementation process for this project started with the study of neural electrodynamics and the integrate-
and-fire model discussed in Chapter 1.3. Initially a single IF neuron was simulated using the Euler method for
approximating the function of its membrane potential. Afterwards a simulation of two neurons coupled through a
synaptic connection was experimented with. Once some ground was covered on the basic principles of simulating
neurons, a more principled approach to simulating a spiking neural network in software had to be adopted. Of
course, there is no single best way to do this. The main requirements for this implementation followed from its
purpose, but it was also built with the intention to be scalable and reusable for future work. The simulation envi-
ronment was developed in an object-oriented way in order to achieve more flexibility and generality. The network
simulation is designed to support networks of any size and topology containing IF as well as Poisson neurons with
outward connections only, used as stimuli. The toolset is completed by the two introduced spike-train metrics and
the model estimator implementation. This is all compiled in the script “neuro.py” which is used as an external
library containing all the functionality for implementing experiments in separate scripts.

This Chapter gives a review of all the key components of the Python code implementing the simulation environment
and of the implementation process itself. The software in its final version seen here is the result of several iterations
of object-oriented construction. Some examples of early simulations for testing the network are given to demonstrate
the correctness of the computational model. The code implementing the two core experiments is included in the
appendix.

3.2 Integrate and fire neurons

The primary element of our neural network model is the neuron object. A snippet containing the code is given in
figure 12. It represents a structure storing all the information associated with the state of an IF neuron at a given
time and all the parameters involved in the differential equation modelling its voltage dynamics. The equation itself
is built into it as the function f. Its numerical solution used to approximate the voltage of the neuron v (V) at
discrete time-steps takes place in another object dedicated to simulation because it will depend on the dynamics
of other neurons in the network as simulation time proceeds. The times of the spikes recorded by simulating the
voltage dynamics - that is the spike train of a neuron is stored in a list called sTrain, as well as the last spike
time explicitly - sTime. The neuron has an index, idx, and a type=‘IF’ to identify it in the connectivity matrix
of a simulated network and to distinguish it from the other neuron objects storing spike trains generated with the
Poisson model. It also stores the IF simulation parameters: the reverse potential e l (El), the spiking threshold
and reset level - v th and v res (Vth, Vres), the resistance of the membrane r m (Rm), constant input current
i (Ie), the time constant of the membrane t m (τm = Cm/Gm), a refractory period t ref (τref ), and a reversal
potential of the synapse e s (Es). It does not take account of the synaptic conductance G s (Gs) which is passed
as a parameter to f as the dynamics of the synapse are dealt with in a separate object.

23 class neuron (object):
24 def __init__(self , idx , v0, st , el=None , vth=None , vres=None , rm=None ,
25 i=None , tm=None , tref=None , es=None):
26 self. id = idx #id in connectivity matrix
27 self.type = ’IF’ #type of neuron
28 self.v = v0 #membrane potential
29 self.sTime = st #time of last spike
30 self.sTrain = [] #spike times of the neuron
31 self.e_l = E_l i f el == None else el #reverse potential
32 self.v_th = V_th i f vth == None else vth #threshold potential
33 self.v_res = V_res i f vres == None else vres #reset potential
34 self.r_m = R_m i f rm == None else rm #membrane resistance
35 self.i = I_e i f i == None else i #constant input current
36 self.t_m = t_M i f tm == None else tm #membrane time constant
37 self.t_ref = t_Ref i f tref == None else tref # refractory period
38 self.e_s = 0 i f es == None else es #synapse reverse potential
39
40 # returns value of f(V) = dV/dt
41 def f(self , V, G_s):
42 f=(self.e_l - V + self.r_m*G_s*(self.e_s -V) + self.r_m*self.i)/self.t_m
43 return f

Figure 12: The IF neuron object (neuro.py).
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These simulation properties are set with a ternary operator so that they can be read in from both optional input
parameters and global variables - an extension not taken advantage of - the former is used throughout the implemen-
tation. This is intended for the integration of the whole environment along with the experiments in a command-line
interface tool for conducting simulations. The plot below shows the voltage of a single neuron simulated for one
second, with a constant current just high enough to make it spike. This particular example is produced earlier
using the Euler approximation. The voltage is reset every time the threshold is reached.
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Figure 13: The membrane potential of a single IF neuron stimulated with El = Vres = −70 [mV ], Vth = −40 [mV ],
Rm = 10 [MΩ], Ie = 3.1 [nA], τm = 10 [ms] for a period T = 1 [s] at time step δt = 1 [ms], without a refractory
period τref = 0, and without any synaptic currents.

3.3 Poisson neurons

The other type of neurons, producing spike-train variables representing the stimuli, are implemented using the
procedure for generating random spike trains with firing rates coming form a Poisson distribution around a pre-set
average, given in algorithm 2. The pNeuron object contains an identifier id, a type equal to ‘P’, a spike train
sTrain and last-spike time sTime, like the IF neuron. Its spike train is generated at initialisation based on the
sRate parameter and its state does not change during simulation apart from updating sTime.

173 class pNeuron (object):
174 def __init__(self , idx , sRate , T, dt, st):
175 self. id = idx #index in connectivity matrix
176 self.type = ’P’
177 self.sTrain = [] #spike times
178 self.sTime = st #time of last spike
179 self.count = 0 #spike count over period T
180 self.T = T
181
182 time = np.arange(0, T, dt)
183 for i, t in enumerate(time) :
184 x = np.random.rand()
185 i f x < sRate*dt :
186 self.sTrain += [t]
187 self.count += 1
188
189 def delay(self , d):
190 i = 0
191 i f d >= self.T or d <= -self.T :
192 self.sTrain = []
193 return
194 while i < len(self.sTrain):
195 self.sTrain[i] += d
196 i f self.sTrain[i] > self.T or self.sTrain[i] < 0:
197 self.sTrain.pop(i)
198 i += 1

Figure 14: The pNeuron object implementing Poisson-generated stimuli (neuro.py).
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It also has the delay function which shifts all spikes in sTrain by a parameter time-period d, deleting the ones
outside the scope of the simulation period T. That is of course, provided d is smaller than T, otherwise it simply
returns an empty spike train. This is the delay used in experiment 2.

A simple test was designed to verify that the procedure for generating spike trains using the Poisson model produces
the desired results. It was run a hundred times to generate spike trains of length one second, at time-step δt = 0.001
[s], with the average firing rate set to 120. The actual rates - the counts of spikes contained in each of the generated
spike trains - were recorded and counted. A histogram was then produced, which can be seen in figure 15, plotting
the number of generated spike trains of each rate. This histogram will be different every time the test is run, due to
the stochastic nature of the process. However it was observed over a number of trials that the resulting distribution
over spike rates does have the correct shape and the mass of rates close to the average consistently dominates the
mass of rates further away from it.

90 100 110 120 130 140 150
Spiking rate r

0

1

2

3

4

5

6

7

N
u
m
be
r o
f 
oc
cu
ra
n
ce
s 
∝

 P
 (r

)

Figure 15: A histogram plotting the numbers of spike trains over their spiking rates for a hundred spike trains
generated using the Poisson model with an average rate of 120.

3.4 Synapses

Now that we have the objects for the two types of neurons set up we move on to the one which is responsible for
keeping track of the state of the connections between them - the synapse object. This will not really represent
a single chemical synapse though - that would have meant that the neuron objects need to keep track of the
individual synapses connecting other neurons to them, or alternatively the job could have been assigned to the
connectivity class. Here this has been avoided through a simplification. The synapse object keeps track of the
states of all the ingoing connections into a neuron at a given point in time and sums up all of their conductances
to compute the total synaptic conductance of an IF neuron - Gs, at that point. This is only possible under the
assumption that all of these actual synapses are of the same type - either inhibitory or excitatory. Strictly speaking,
although a neuron is either inhibitory or excitatory, depending on the kind of synapses it forms to connect to other
neurons, it can have both types of neurons synapting to it. Here, all the synapses through which an IF neuron
in the network receives its inputs are assumed to be of the same kind - depending on the reverse potential for the
synapse Es stored in the neuron object itself (zero for excitatory or negative for inhibitory). This in fact is not an
unreasonable assumption as it is usually the case in most experiments involving an area of a real nervous system.
Most importantly, this simplification does not in any way violate any of our experimental conditions and suits the
purpose of the network.

The code for the synapse object is given in figure 16 below. The id of a synapse corresponds to the id of the
neuron it belongs to - one will be created to manage the synaptic conductance of each IF neuron in the network;
t s (τs) gives the time-scale which is also assumed to be the same for all the actual synapses the object manages;
sTs is a list storing the time periods incurred since the last spikes of all the pre-synaptic neurons - these determine
the conductances of individual synapses connecting them to the given neuron (see equations 46, 47), and will be
updated at every time step of a simulation; sGs stores the strengths of these synapses (also involved in the equation
for the synaptic currents - eq. 46) - they will remain the same throughout a single simulation and depend on how
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the connectivity was initialised. The total synaptic conductance is calculated by the conduct method. Now, due
to the use of the Runge-Kutta method for approximating the membrane potential this is slightly more involved.
There are three variables Gs 1, Gs 23 and Gs 4 stored in the synapse object which will be used to compute the
four terms defined for the Runge Kutta fourth order expansion (eq. 53, 54 ). We will revisit these variables when
we reach their use in the simulation part, but essentially they approximate the value of the summed conductance
at different parts of the time-step - tn, tn + δt/2 and tn+1 respectively - to help approximate the voltage in the
same fashion.

49 class synapse (object):
50 def __init__ (self , idx , dt, ts=None) :
51 self. id = idx #index of post -synaptic neuron
52 self.t_s = t_S i f ts == None else ts #time -scale of the synapse
53 self.dt = dt
54 self.sTs = [] #times since pre -synaptic spikes
55 self.sGs = [] #synaptic strengths
56 self.Gs_1 = 0 #summed synaptic conductance
57 self.Gs_23 = 0
58 self.Gs_4 = 0
59
60 # Sum -up and update synaptic conductance
61 def conduct(self):
62 self.Gs_1 = 0
63 self.Gs_23 = 0
64 self.Gs_4 = 0
65 for i in range( len(self.sGs)):
66 self.Gs_1 +=0.5* self.sGs[i]*exp(- self.sTs[i]/self.t_s)
67 self.Gs_23 +=0.5* self.sGs[i]*exp(-(self.sTs[i]+0.25* self.dt)/self.t_s)
68 self.Gs_4 +=0.5* self.sGs[i]*exp(-(self.sTs[i]+self.dt)/self.t_s)
69 return self.Gs_1

Figure 16: Code snippet for the synapse object neuro.py

3.5 Network connectivity

The connectivity of the neural network is expressed by a connectivity matrix like the ones given in the control flow
diagrams of the experiments in Chapter 2. For a network consisting of N neurons this is an N ×N matrix where
the i, j-th entry (row, column) stores the strength of the synapse from neuron i to neuron j - taking values between
zero and one. The connectivity class cnet serves as a mediator of information between neurons by updating their
synapses. It is passed the connectivity matrix cMat and the lists of neurons and their synapses at initialisation -
nrns, syns, and it in turn initialises the lists of connection strengths and times since last spikes in the synapse for
every neuron based on its pre-synaptic neurons. It is created for every network simulation and is used to update
the synapses after computing the membrane potentials of the IF neurons at each time step. This is done by calling
the update sTs function for every synapse of a neuron, which in turn finds the pre-synaptic neurons in cMat
using the list pre synapt ns method. The code for the cnet class is given in figure 17 below.

75 class cnet (object):
76 def __init__(self , cMat , nrns , syns):
77 self.cMat = cMat
78 # iterate through neuron/synapse ids
79 for j in range( len(syns)):
80 # iterate through indices of neurons pre -synaptic to neuron j
81 for i in ( self.list_pre_synapt_ns(syns[j]) ):
82 # fill list of synaptic strengths and pre -synaptic spikes
83 syns[j].sGs.append(cMat[i][j])
84 syns[j].sTs.append (0 - nrns[i]. sTime)
85
86 # update times since pre -synaptic spikes in synapse
87 def update_sTs(self , synapse , nrns , t):
88 # iterate pre -synaptic neurons ids
89 for j,k in enumerate( self.list_pre_synapt_ns(synapse) ):
90 synapse.sTs[j] = t - nrns[k]. sTime
91
92 # return pre -synaptic neurons reaching parameter synapse
93 def list_pre_synapt_ns (self , synapse):
94 cMat = self.cMat; id = synapse. id
95 return [item for sublist in np.nonzero(cMat[:, id]) for item in sublist]

Figure 17: Code snippet from the class managing the connectivity of the network (neuro.py).
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3.6 Network simulation

The core component of the simulation environment is the netSim object used to simulate the voltage dynamics of
IF neurons in a neural network. The code for it is given in figure 18 Its initialisation takes as input a list of neurons
Nrns, a connectivity matrix cMat, a time period T, time-step dt and an optional Nrns can be of both the neuron
and pNeuron classes defined above. The idea is that these are all initialised in advance and the simulation class is
only responsible of generating results. Apart from consecutive simulations this can allow for the system to take in
any network following the given format and simulate it. The randomly initialised neuron object used throughout
the experiments could have easily been created inside the simulation itself but this more general approach can
enable the simulation of specific inputs - for example another type of neurons containing spike-train stimuli can
be incorporated. During the initialisation of the simulation the two types of neurons at hand are distinguished
between and listed separately in neurons and poissons, all of them are kept track of in allNrns. The synapses
for IF neurons, listed in synapses, are initialised in the simulation itself as they will only serve its purpose and
not store any relevant data.

112 class netSim (object):
113 def __init__(self , Nrns , cMat , T, dt, h_t=None):
114 self.allNrns = Nrns
115 self.neurons = []
116 self.poissons = []
117 self.synapses = []
118 self.cMat = cMat # connectivity matrix
119 self.t = np.arange(0, T, dt) #time array
120 self.dt = dt #time step
121 self.ht = 0 i f h_t==None else h_t # chronologic time incurred
122 for i in range( len(self.allNrns)) : #neurons and synapse objects
123 i f self.allNrns[i].type == ’IF’:
124 self.neurons.append(self.allNrns[i])
125 self.synapses.append(synapse(i, self.dt))
126 e l i f Nrns[i].type == ’P’:
127 self.poissons.append(self.allNrns[i])
128 self.cNet = cnet(cMat , self.allNrns , self.synapses)
129 # arrays storing simulation data - potential and conductivity over time
130 self.vSim = np.zeros([ len(self.neurons), len(self.t)])
131 self.gSim = np.zeros([ len(self.neurons), len(self.t)])
132 self.raster = np.zeros([ len(self.allNrns), len(self.t)])*np.nan
133
134 # Compute membrane potential at a single timeslice using RK4 appximation
135 def getV(self , nrn , t, Gs_1 , Gs_23 , Gs_4):
136 i f nrn.v >= nrn.v_th : #record spikes and reset potential
137 nrn.v = nrn.v_res
138 e l i f t < nrn.sTime + nrn.t_ref : #hold reset if refracory period
139 nrn.v = nrn.v_res
140 else : #inegreate using RK4 method
141 k1 = self.dt*nrn.f(nrn.v, Gs_1)
142 k2 = self.dt*nrn.f(nrn.v + k1/2, Gs_23)
143 k3 = self.dt*nrn.f(nrn.v + k2/2, Gs_23)
144 k4 = self.dt*nrn.f(nrn.v + k3, Gs_4)
145 nrn.v += 1/6*( k1 + 2*k2 + 2*k3 + k4)
146 return nrn.v
147
148 # Simulate network
149 def simulate(self):
150 for i, t in enumerate(self.t) :
151 for j in range( len(self.synapses)) : #update conductances
152 self.cNet.update_sTs(self.synapses[j], self.allNrns , t)
153 self.gSim[j,i] = self.synapses[j]. conduct ()
154 for j in range( len(self.neurons)) : #update potentials
155 self.vSim[j,i] = self.getV(self.neurons[j], t, self.synapses[j].Gs_1 ,
156 self.synapses[j].Gs_23 ,self.synapses[j].Gs_4)
157 i f self.neurons[j].v >= self.neurons[j].v_th : #record IF spikes
158 self.neurons[j].sTime = t
159 self.neurons[j]. sTrain += [self.ht + t]
160 self.raster[j][i] = j
161 for p in range( len(self.poissons)): #check for P-spikes
162 i f t in self.poissons[p]. sTrain :
163 self.poissons[p].sTime = t
164 self.raster[self.poissons[p]. id][i] = self.poissons[p]. id
165 for j in range( len(self.allNrns)) : #reset sTimes
166 self.allNrns[j].sTime = - (t - self.allNrns[j].sTime)
167 return self.vSim , self.gSim , self.raster

Figure 18: Code Snippet from the network simulation.

The results from the simulation are output in three formats - two 2D arrays - vSim and gSim - storing the com-
puted voltages and synaptic conductances for each neuron at each time step as well as another 2D array of “nan”
Python objects - raster - marking the occurrences of spikes from each neuron over the simulation period, used to
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produce a raster plot of the simulation. The raster plot simply plots a dot for every spike elicited by a neuron on its
own time-line of the simulation. An example is given in figure 21, put into context later on. These outputs are for
testing purposes only. They are never used in the experiments - only the recorded spike trains stored in each neuron
are taken account of in order to compute mutual information. However, a dedicated object called experiment is
created in neuro.py, for storing all the simulation results produced during an experiment, which can include the
2D arrays, as well as the neurons containing the spike trains. The production of these arrays impacts the time
efficiency, but they are kept in the simulation procedure for convenience and debugging purposes.

Before moving on to the simulate method, implementing the actual simulation, we take a look at the function
getV, used to compute the membrane potential of an IF neuron at a single time step. As previously discussed
this is accomplished by applying the Runge-Kutta method for numerical integration. Here is where the three
Gs # parameters computed in synapse.conduct come in - they are passed as parameters to getV along with
the neuron object - nrn, and the current time-stamp t. Before the membrane potential in nrn.v is updated it is
checked if its value has reached the the spiking threshold, in which case it is set to the reset value nrn.v th. If that
in turn has occurred less than one refractory period nrn.t ref ago the reset value is maintained. Otherwise the
membrane potential is approximated by calculating the Runge-Kutta fourth order coefficients with the according
Gs # parameters.

The simulation consists of a main loop iterating through step indices and values in the time array t. Every
iteration of this loop is split into three parts: a loop through the list of synapse objects for updating the synaptic
conductances, a second one for updating the membrane potentials in neuron objects using getV and for recording
spikes in their last-spike times sTime, their spike trains sTrain and the raster plot, and another one for updating
the last-spike time sTime every time a new spike is reached in the pre-generated spike trains of pNeurons and
recording them in raster too. An extra loop in the end of the simulation, after the main loop, is added to set
the last-spike times in IF neurons to minus the time elapsed since their occurrence for their use in consecutive
simulations. Two test experiments were conducted to verify that the network simulation operates correctly which
are documented below.

Two coupled neurons

This first, very basic experiment simulates a network consisting of just two IF neurons synapting onto each other.
It is run twice - with excitatory synapses (Es = 0), and with inhibitory ones (Es = −80 [mV ]). The intention
is to examine whether the synaptic stimulation affects the neurons’ voltage dynamics in the expected way. The
spikes of excitatory neurons make the neurons that they synapt to more likely to spike. Because of the cyclic
coupling between the two neurons their spiking must become mutually dependent and therefore we expect their
spiking times to come closer together over time, until they eventually synchronise. On the contrary, an inhibitory
connection between neurons means that every pre-synaptic spike makes the post synaptic neuron less likely to fire,
and consequently the spiking times of two coupled inhibitory neurons should diverge. The initial voltages of both
neurons are assigned random values between the spiking threshold and the reset level. The rest of the settings
used for the two network simulations are the same except for the reversal potential of the synapse Es. The reversal
potential of the membrane is El = −70 [mV ]; the threshold Vth = −54 [mV ]; the reset level Vres = −80 [mV ]; the
membrane’s resistance Rm = 10 [MΩ]; the constant input current Ie = 1.8 [nA]; the time-scale of the membrane
τm = 20; [ms]; the simulation period T = 1 [s] and time step δt = 1 [ms]; again no refractory period τref = 0. The
actual values assigned in the code for this experiment follow the strictly the scale of the metrics given here, which
is somewhat realistic. This is dropped in the code for the two core experiments converting everything to a scale
such that the resistance of the membrane equals 1 (rather than 107) in order to avoid working with large numbers.
The values themselves are not exactly arbitrary either - they too are somewhat realistic or chosen deliberately. In
the case of the constant stimulation current Ie, here it is lower than the one used for a single neuron simulation
due to the presence of the synaptic currents. The strengths of the synapses between the two neurons are both set
to 1. The discrete voltage data output by the two simulations is plotted for each pair of coupled neurons in figure 19.

The observed results have met our expectations consistently over multiple experimental trials. As visualised in
the plot above, the excitatory neurons synchronise while the inhibitory ones diverge their signals. The synaptic
connectivity of the network seems to be in order and we move on to a more involved experiment testing the
dependencies between spike trains produced by the neural network more explicitly.
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Figure 19: (top) The voltage dynamics of two randomly initialised coupled excitatory neurons - Es = 0 - their
spiking synchronises over time; (bottom) The synapses between the two neurons are inhibitory - Es = −80 [mV ]
- and their spike times diverge.

Propagation network

In this experiment we construct a network of IF neurons that has a layered topology and inspect how spike sig-
nalling propagates through it. The layout is given in figure 20. The network consists of sixteen neurons, plotted
in four layers of four - the vertical columns of vertices. There is full connectivity between the layers, directed to
the right in the graph. All of these synaptic connections are excitatory and have the same strength equal to 0.6.
Initially, all the neurons are stimulated with the same level of direct input current Ie = 1.8 [nA]. Most of the
other settings are the same as in the coupled neurons experiment, except for the time constant of the membrane
τm = 30 [ms] and the refractory period τref = 5 [ms]. Here again, every neuron is initialised with a random voltage
and last-spike time. The left-most layer is only stimulated by the constant input current while the following three
receive synaptic currents from all the neurons in the previous layer as well. The spiking of neurons in one layer
should cause an increase in the firing rates of neurons in the next layer. Therefore as long as the stimulation current
is the same throughout the network, neurons in each consecutive layer are expected to have higher firing rates than
the ones in the previous layer.

In order to produce some more complex behaviour we stimulate some of the neurons with a higher current for a
short period of time. The simulation begins and proceeds for a while until at some point the input current Ie of
neurons in the left-most layer is put up to 7.2 [nA]. This level is maintained for a short period of time, after which
it is set back to the original level for the rest of the simulation period. This is realised by running three consecutive
simulations of the same network as enabled by the netSim class. The external stimulation current is usually used
as a constant background input as opposed to a more structured stimulus. This is why it is not implemented as
an input parameter of the simulation, defined for every time-step. Instead, it is has been made possible for the
same network to be simulated time and again, keeping track of the whole spike trains but outputting new voltage,
conductance and raster maps every time. For the purpose of this experiment these results are assembled together
for the whole period of the experiment.

We want to observe how the temporary increase in the stimulation current boosts the spiking frequency of neurons
in the left-most layer, which in turn speeds up the spiking of neurons in the following ones. On the other hand,
due to the layered full connectivity the spiking rates should generally increase in each consecutive layer. Overall
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Figure 20: Layered network connectivity for the signal propagation experiment: each vertical layer of neurons is
fully connected to the next one - left to right. All synaptic strengths are set to 0.6.

we expect to observe both of these effects and maybe some structure due to their joint presence.
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Figure 21: Raster plot of the results from the layered network experiment. Every row on the y- axis (0-16)
corresponds to the spike train of a neuron as indexed in the graph in figure20.

The complete raster plot of the experiment is given in figure 21. The stimulation current for neurons 0, 4, 8 and 12
is raised 300 milliseconds into the simulation for 200 milliseconds, after which it is reset for another 500 milliseconds.
During the increased- stimulation period we can clearly see all of the neurons firing quicker than they do through
the rest of the simulation. Taking a closer look, we observe that while the firing rates of neurons in each consecutive
layer increase during the first and third part of the simulation, they decrease in the same order during the second
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part - the period when the left-most layer is stimulated with current four times higher than the rest. The excitation
effect fades as it progresses through the right-most three layers stimulated with the low current throughout. The
total currents they receive are still smaller than the increased stimulation current of the left-most layer. In addition
to this, there is some pattern to the excitation as the signal amplifies through the layers. The spikes of neurons
from the three right-most layers are not exactly rhythmic but rather come in burst patterns of increasing length
appearing periodically with the pulse of the left-most stimuli. This expected due to the non-linear influence of
synaptic currents.

The results from this experiment verify that the implemented neural network model operates correctly. The neurons’
responses to varying simulation conditions confirm that their signals propagate properly through the network. We
can therefore rely on the experimental environment to produce spike-train variables with the intended relationships
between them. Although all the data that will be used to test the information estimator is produced by this
deterministic system it is guaranteed too have the statistical properties characteristic to neural signalling under our
simplified experimental conditions and the integrate-and-fire model assumptions. This kind of simulated data serves
as the benchmark for the mathematical hypothesis tested in this project. Positive results on it would serve as a
clear indication of the applicability of the mutual information estimator to real neuroscientific and other data, which
can be the subject of further research. The rest of the functionality of the experimental environment neuro.py
implements the mutual information estimator along with the spike-train metrics and some auxiliary elements.

3.7 Computing distances

In order to apply the metric-space information estimator we first construct functions implementing the spike-train
metrics. The van Rossum kernel-based distance is computed in a function called vR computeDistance - the code
for it can be seen in figure 22. It is passed two spike-train parameters u and v, and the time scale of the kernel tau
(τ). We use τ = 12 [ms] throughout - a value tested to produce good results [21]. The explicit function mapping
through the exponential kernel filter is avoided as we are only interested in the value of the distance. The metric is
calculated in the form given in equation 37 - the three double loops add up the tree involved sums and the square
root is returned in the end.

239 def vR_computeDistance(u, v, tau) :
240 dist = 0
241 for i in range( len(u)):
242 for j in range( len(u)):
243 dist += math.exp(- abs(u[i] - u[j])/tau)
244 for i in range( len(v)):
245 for j in range( len(v)):
246 dist += math.exp(- abs(v[i] - v[j])/tau)
247 for i in range( len(u)):
248 for j in range( len(v)):
249 dist -= 2*math.exp(- abs(u[i] - v[j])/tau)
250 dist = math.sqrt(dist)
251 return dist

Figure 22: The van Rossum distance function implementation (neuro.py).

218 def VP_computeDistance(t1, t2 , q) :
219 # manage corner cases
220 i f len(t1) == 0 and len(t2) == 0:
221 return 1000
222 i f len(t1) == 0 :
223 return len(t2)
224 i f len(t2) == 0 :
225 return len(t1)
226 # compute using dynamic programming algorithm
227 G = np.zeros ([ len(t1), len(t2)])
228 G[:, 0] = [i for i in range( len(t1))]
229 G[0, :] = [i for i in range( len(t2))]
230 for i in range(1, len(t1)) :
231 for j in range(1, len(t2)) :
232 G[i][j] = min(G[i-1][j-1] + q*abs(t1[i]-t2[j]), G[i-1][j]+1, G[i][j -1]+1)
233 return G[-1][-1]

Figure 23: The Victor-Purpura metric function (neuro.pty).

The Victor-Purpura edit-length distance is computed in the function VP computeDistance (figure 23 above)
following the dynamic programming procedure given in algorithm 1. It also takes as parameters two lists of ordered
spike times t1 and t2, as well as the coefficient q - the cost per distance in time for moving a spike. The basic step
of cost 1, for insertion an deletion, sets a scale on the metric such that qδt must be in the range (0, 2) for a spike
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train to be moved over a distance δt - otherwise it would be cheaper to delete it and insert it in the destination
position. Therefore we need to set the time-scale of the metric by choosing deltat to be the maximum time scope
for moving a spike and dividing 2 by it to determine q: q < 2/δtmax. We choose δtmax to be the same magic value
of 12 [ms] used for the van Rossum metric. We therefore use q < 2/0.012 = 166 as the cost coefficient throughout.

We also need some data structure to store the calculated pair-wise distances for a set of spike trains in an organised
way. We therefore implement another function, getDistanceMap, computing the standard-type distance matrix
of a list of spike trains, trains, given a parameter distance metric, metric - a simple object is created to store
the identity of the metric used. For a set with N entries this is a N ×N matrix where every i, j-th entry contains
the distance between spike trains i and j, as indexed in the set. In our case this matrix will be symmetric as the
distance metrics themselves are symmetric d(u,v) = d(v,u) - computing both triangles twice is avoided in the
function as these matrices will be computed very many times during experiments - once for each set of spike trains
produced by each neuron in a MI estimation round. Still the whole matrix is filled as this makes the ordering in
the estimator easier to write. The code for the distance map is given in figure 24 below.

239 def getDistanceMap(trains , metric):
240 N = len(trains)
241 dMap = np.zeros ([N,N])
242
243 for i in range(N):
244 for j in range(N):
245 i f dMap[j][i] != 0 :
246 dMap[i][j] = dMap[j][i]
247 e l i f i != j :
248 i f metric.type == ’vR’:
249 dMap[i][j] = vR_computeDistance(trains[i], trains[j], metric.tau)
250 e l i f metric.type == ’VP’:
251 dMap[i][j] = VP_computeDistance(trains[i], trains[j], metric.q)
252
253 return dMap

Figure 24: A function to calculate the distance matrix of a set of spike trains neuro.py.

The two implemented metrics have slightly different but very similar time complexities, both dependent on the num-
bers of spikes in the trains. If their lengths are m and n, then the van Rossum calculation vR computeDistance
is dominated by O(m2) or O(n2) - whichever is bigger, while VP computeDistance is O(mn) but it also takes
O(mn) extra space allocation for the dynamic programming array, which in Python does not come cheap in terms
of time. However we are not too concerned with efficiency here. Both of the metrics are implemented due to their
simplicity and in order to cross-verify the experimental results using two of the spike-train distance measures most
relevant to computational neuroscience.

3.8 Estimating mutual information

The implementation of the mutual information estimator is simple and straight-forward. The code for the function
computeMI is given in figure 25. It takes five parameters: two sets of spike trains, S and R, of equal sizes,
representing the outcomes of a stimulus and response metric-space variables, a spike-train metric, metric, and the
sizes of the two open balls h1 and h2 - that is the numbers of nearest-neighbour spike trains contained in the regions
around instances from the two sets, used to estimate their probability mass. These regions need to be smaller than
the size of the sample set. Two distance maps are constructed - one for each set of outcomes. Every stimulus spike-
train s from S corresponds to a response spike train r from R with the same index. We want to find the subset of h1
closest spike trains to s in S and the one of h2 closest spike trains to r in R, and then count the stimulus-response
pairs shared across both subsets. This is accomplished using numpy.argsort(), by sorting in ascending order the
row in the distance matrix corresponding to the spike train in question, and taking the original column indices of
the first h1 or h2 entries respectively. The size of the cross-section of the two subsets of indices is then calculated
on line 376. This computes us the #[S(si, ri, h1, h2)] term of equation 32 and we apply the MI formula for two
metric-space variables adding up the logarithms in the loop (line 377) and normalizing by N in the end (378). Every
spike-train instance is counted in the neighbourhood around it so that the size of cross-section of the two regions
for a given stimulus-response pair would always be greater or equal than one. This serves as a statistical correction
and ensures that the probability estimates will always be positive and their logarithms will be successfully computed.
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363 def computeMI(S, R, metric , h1, h2) :
364 i f len(S) != len(R) :
365 raise Exception("|S| != |R| !")
366 N = len(S)
367 i f h1 >= N or h2 >= N:
368 raise Exception("h1 or h2 >= N !")
369 h1h2 = h1*h2
370 MI = 0
371 dMap_S = getDistanceMap(S, metric)
372 dMap_R = getDistanceMap(R, metric)
373 for i in range(N):
374 b_si = dMap_S[i]. argsort ()[:h1+1]
375 b_ri = dMap_R[i]. argsort ()[:h2+1]
376 count = len(np.intersect1d(b_si , b_ri))
377 MI += math.log((N*count)/h1h2 , 2)
378 MI = MI/N
379 return MI

Figure 25: The function calculating mutual information between stimulus-response pairs from two spike-train sets
by applying the metric-space estimator I(R;S) ≈ 1

N

∑N
i=1 log2 N#[S(si, ri, h1, h2)]/h1h2.

This concludes the implementation documentation. The development of the software for this project in Python
involved a lot of learning about the language and decision making on the design of some of the implemented com-
ponents. Though some of the decisions could have been different from the standpoint of the gained experience, it
has been a dynamic and creative process overall.

The next Chapter discusses the results produced using the software tools developed during the course of this project
and their implications for the model estimator.
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4 Results

The experiments described in Chapter 2 were run many times with various settings configurations and using both
of the implemented spike-train metrics. In this Chapter we examine the results that were produced, taking account
of the exact experimental parameters used and their effects. To compensate for the lack of comparison with the
standard time-discretisation approach to estimating mutual information between spike trains, by Bialek and Strong
[11], we investigate how the MI estimates produced using the metric-space model vary as sample sizes grow. We
are interested in seeing if they appear to converge to some underlying ground truth which is not readily accessible.
Finally, we apply the network inference principles discussed in Chapter 2.5 to try and gain insight about the con-
nectivity between neurons in a network based on the mutual information between their activity.

4.1 Experiment 1

In this experiment we investigate the relationship between the strength of the synapse connecting two neurons
and the estimated mutual information between their spike-trains. The code implementing the procedure, described
schematically in figure 9 in Chapter 2.2, can be seen in the Appendix. The most important experimental parameters
are the ones involved in the estimator itself - the number of simulation trials per estimation - T# - that is the size
of the stimulus-response sample set, and the sizes of open balls h1 and h2. The former is easier to decide on - the
bigger the sample set, the more representative it should be in general. The resolution of the model given by the
region sizes requires some more attention.

The two assumptions that probability estimation in nearest-neighbour regions relies on need to be kept in mind.
The regions must be large enough to provide meaningful statistics but small enough to avoid weakening too much
the assumption that the probability is constant throughout their members. This problem is approached here only
empirically - without trying to determine any optimal values. In order to attempt the last, some mechanism would
need to be devised and put at work on every estimation sample set. Since the structure of the underlying metric
spaces is hidden, this task is not straight-forward. One approach that could be adopted and has been used with some
success in other spaces without coordinates such as Hilbert spaces, is to try to calculate the fractalisation coefficient
of the underlying probability space. This is a measure of the roughness of a jagged edge, surface or other space that
has emerged from the problem of measuring the lengths of real- world coastlines which appear to have different
lengths when measured with metric units of different precision. The coefficient of fractalisation is determined by
the slope of the linear relationship between the logarithm of the measured length and the magnification factor of
the used unit. This would need to be adapted to use the relationship between the probability estimates and the
size of the regions. However it is not certain whether the concept is directly transferable across to estimating the
structuredness of the probability space corresponding to the metric space of our spike trains. This will require a
more involved investigation and is therefore left out of the scope of this project since trial-and-error quickly turned
out to produce satisfactory results.

The sizes of the two regions in the metric spaces of the two spike-train variables involved in mutual information
estimation are set to be equal throughout. The experiment was initially run with h1 = h2 = 10 nearest-neighbour
regions over sample sets of size 30 at ten estimation points, and straight away an increasing linear relationship
between the strength of the connection and the MI estimates was recognisable. This early positive result deter-
mined the direction of the experimental process. Different values for the ball sizes ranging between 10 and 50 were
experimented with, but this turned out to have little influence on the outcomes of the experiment. Since one of the
requirements for the balls is to be rather small, most later trials were conducted with 12 or 14 samples per region.
This aspect of the process is not analysed rigorously here because the estimator exhibited the desired behaviour
immediately, without the need for a tedious search for the right parameters. It appears to deliver sensible results as
long as the balls are not too large. These results might be systematically biased but there could be many different
reasons for that, and apart from setting the optimal resolution the model may need additional corrections. Refining
the estimator’s requires a more in-depth analysis supplied with more diverse and voluminous experimental data.
It would be easier to do this for a type of data such that the exact mutual information and the error of the esti-
mates can be can be calculated directly analytically. This kind of tests could justify the estimator’s application to a
problem where such data is relevant and the aim is to avoid using the standard formula for efficiency or other reasons.

In the neuroscientific context however, the problem of calculating information in metric spaces without coordinates
addressed by the model estimator is precisely that there is no direct analytic solution due to the complex nature of
the space of neural spike trains. In this perspective any model can only be refined by putting more experimental data
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into context and trying to tune its convergence behaviour on growing sample data sets. If there was a good known
method it could serve as a reference point, but in our case the other familiar approach is not at all guaranteed to lead
to better results since it does not use the spike-train tailored metrics. In addition to this it is extremely inefficient
and would hugely increase the computational cost of both experiment simulations and information estimation.
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Figure 26: MI computed at 50 steps of g with T# = 48 sampling trials and ball-sizes h1 = h2 = 12. (Top) MI
between neurons 2 and 0 - positive correlation with the connection strength g with Pearson coefficient ρ = 0.87 and
regression slope 0.87. (Bottom) MI between neurons 3 and 0 - negative correlation as the strength of the synapse
equals 1− g.

This essay aims to build on the dummy-data results from the clustering task performed with the initial version of
the metric-space model, introduced in [23]. By demonstrating that the estimator performs well on a more elabo-
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rate task using data generated with a computational neural model we open the door for its future applications to
neuroscientific and other problems. Figure 26 contains a plot of the estimated mutual information over growing
connection strength between neurons indexed 2 and 0 in the experimental network. This result is obtained by
running experiment 1 to compute mutual information at 50 steps of the synapse strength g between zero an one
using the Victor-Purpura metric with sample sets of size T# = 48 and region sizes h1 = h2 = 12. There is a clear
positive correlation between the two variables even using this relatively small sample size. The Pearson correlation
coefficient of the estimates confirms this with a high positive value of ρ ≈ 0.87. The regression line has a slope of 0.63
and although there is some deviation around it, it is consistently symmetric along the line and no distinct outliers
are present. The relationship between the spike-trains of connected neurons is captured by the mutual information
estimator which confirms our hypothesis. Very similar results were obtained using the van Rossum metric with an
exponential kernel. The resolution of 50 sample points over the synaptic strength is preserved throughout the rest
of the presented experiments. This value is tight enough to capture the tendency in the variation of the estimates
and its importance to the overall accuracy is only symbolic. The parameter we are interested in varying from here
on is the size of the spike-train sample sets.

The figure above also shows the MI estimates between neurons 3 and 0 where the synapse strength is 1−g. Another
way of verifying that the relationships between neurons are reflected in the estimates is by comparing the mutual
information between spike-train responses and stimuli with an increasing connection strength between them, to
the mutual information between the same responses to simultaneous stimuli with a weakening connection strength.
The two connection strengths vary reciprocally due to the connectivity of our experimental network. We do this
by first ordering the MI estimates between one pair of neurons and then plotting against them their corresponding
estimates between the other pair. figure 27 gives an image of this plot. As expected, there is an inverse-proportional
relationship between the two sets of mutual information estimates. This means that as the dependence of neuron
0’s spiking on the pre-synaptic spiking of neuron increases 2 its dependence on the spiking of neuron 3 decreases
and vice versa.
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Figure 27: Mutual information between neurons 0 and 1, computed at 50 synapse strength steps with t# = 48
stimulus-response samples and ball-sizes h1 = h2 = 12. There is a clear linear relationship with correlation
coefficient 0.87, modelled by a regression line of slope 0.87.

In order to investigate the mutual information estimator’s response to growing sample sizes the experiment was
run nine times starting with T# = 16 simulation trials per estimation and stepping up by 16 each time. The region
sizes were fixed at h1 = h2 = 14 for every round. The outcomes of the experiment run with sample sizes 32, 64,
96 and 128 are displayed in figure 28, for estimates obtained with the van Rossum distance, and in figure 29 for
the ones when the Victor-Purpura metric is used. As the number of spike trains in the sample sets increases the
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the estimates slightly shift their values upwards and the slope of the linear relationship between them and the
connection strength rises. Here again the mutual information between neurons 2 and 0 is taken as example, with
the synapse between them strengthening.
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Figure 28: The results from running experiment 1 with the van Rossum spike-train metric and sample sizes T# = 32
(top-left), T# = 64 (top-right), T# = 96 (bottom-left) and T# = 128 (bottom-right). Region sizes are kept at
h1 = h2 = 14 throughout.

From these results it can be seen that the information estimates vary as the sample data sets grow. Initially they
increase faster as their relationship to connection strength takes its correct shape, but the results obtained with
sample sets of size 64 (bottom-left) are already very similar to the ones produced with double the size - 128 (bottom
right). The correlation coefficient in these two cases is almost exactly the same and the slopes of the regression
lines are very similar. The positive offset along the MI axis appears to grow incrementally by about 0.1 with
every next 32 samples added to the sets. The information is measured in bits reflecting the uncertainty associated
with the structure of the spike trains expressed in binary coding length. Larger sample sets appear to enable the
estimator to capture more of the mutual dependency between the structures of the two signals. This indicates that
using the metric-space method, it would take more data to obtain optimal estimates, than to produce estimates
that only capture the relative differences between the mutual information of weakly and strongly related variables.
In order to confirm that the estimates will not keep increasing incrementally but will tend to converge to some
optimal values provided enough data we need to examine the relationship between estimates for a fixed strength of
the connection between two specific neurons and the size of the sample sets.
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Figure 29: The results from running experiment 1 with the Victor-Purpura spike-train metric and sample sizes
T# = 32 (top-left), T# = 64 (top-right), T# = 96 (bottom-left) and T# = 128 (bottom-right). Region sizes
are kept at h1 = h2 = 14 throughout.
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We first plot the Pearson correlation coefficient against the sample size. As expected from the observed results
this quantity converges very quickly to a value around 0.9, which is close to the maximum of 1. This is shown in
figure 30 for the experimental cases of both spike train metrics - the van Rossum kernel-based method on the left,
and the Victor-Purpura edit-length distance on the right. The two results are almost identical and reveal the same
tendency. The results obtained with only 16 samples, 14 out of which are used for probability estimation are simply
not representative.
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Figure 30: The convergence of the correlation coefficient ρ as the number of sample spike-trains used to estimate
the MI between two neurons increases - with the van Rossum metric (left) and Victor-Purpura (right).

We finally record the estimated mutual information of the two neurons when the connection between them is of
maximum strength - g = 1, at every sample-size step. The resulting plots for the cases of both metrics can be seen
in figure 31. In the fist one, where the kernel-based metric is used, the the slope of the estimates’ growth appears to
slowly decrease as they curve to the right the, larger T# becomes. In the second one, with the edit-length distance
this tendency is visible even more clearly as the amplitudes grow more rapidly and regularly through the first four
estimates while for the remaining five they slow down and become more uncertain in their trend. From this final
test we conclude that as the data processed by the estimator increases its estimates should vary less, approaching
their optimal values. The convergence can be analysed further but the important news is that it is present.
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Figure 31: MI estimated between neurons with connection strength g = 1 as sample sizes grow. The growth of
estimates slows down. The estimates obtained with the van Rossum distance (left) appear to curve to the right.
The convergence is clearer in the case of the Victor-Purpura metric (right).
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4.2 Experiment 2
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Figure 32: The results from experiment 2 obtained with the van Rossum spike-train metric for time delays in the
range ±0.9 at step 0.05. Although the results meet our expectations in the range ±0.5 they interestingly exhibit
the inverse behaviour for the rest of the range.

We now move on to the second experiment reflecting the mutual information estimator’s sensitivity to time delays
in one of the spike-train variables. The procedure for the experiment given in figure 10 in Chapter 2.4 is followed.
The number of estimation rounds R# is set to 23 with T# = 48 network simulation trials producing the spike-train
sample sets for each of them. All the data is precomputed before time delays ranging in [−0.9,+0.9] at step 0.05
[s] are added to all the spike trains of Poisson neurons. The pairwise mutual information is estimated R# times at
each delay point and the mean and standard deviation are calculated for it. The plot for the MI between neurons
2 and 0 is displayed in figure 32 and 33 for distances computed with each of the two metrics.

For this experiment we consider only neurons 2 and 0 and the connection strength between them is set to 0.9. The
time delay introduced in the spike trains of the stimuli has a principally different effect on their relationship to the
responses, compared to the strength of the synapse between them. If we simply treat spike trains as signals, the
delayed signals of the stimuli are still mutually dependent to the responses. The causality is just stretched through
time and although it goes in both directions, the mutual information between two variables is a symmetric measure.
However, because we cut off anything outside the 1s time window covered by the original spike train being delayed,
the dependence should reduce as we leave some of the structure of the signal out. The spike train metrics on the
other hand, consider the spike trains as a whole. In the case of the Victor-Purpura edit-length distance there are
some replacements and moving stuff around to mould one structure into the other, whereas the van Rossum distance
depends on the areas under the curves of the kernalised spike trains. But in fact, it does not really matter how they
reflect the temporal shifts since they are computed to find neighbourhoods in the metric spaces of the stimuli and
the responses separately. And since the same delay is added to all stimuli at each estimation step, similar responses
to similar stimuli would still be grouped together in their respective sets. Therefore it is interesting to find out how
if the estimates will reflect this kind of alteration in the signals and how.

Interestingly with the Victor-Purpura metric the estimator does not seem to capture the time shifts in the stimuli
according to our expectations, especially when they are in the positive direction (fig. 33). This could possibly mean
that structure-wise earlier parts of the stimulus spike train contain more information about the response than later
parts. On the negative side the MI increases as the delay approaches zero, meaning that the residues of the stimuli
shifted to the left, lacking some of the initial parts of the spike train are less similar to each other according to the
edit-length distance, than residues lacking some of the later parts, shifted to the right. Possibly larger sample-set
sizes for each estimation being more representative would improve the results. The van Rossum L2 distance between
kernel-filtered spike trains however, produces a different result at the same sampling resolution (fig. 32). In the
range [−0.5,+0.5] the MI estimates vary in the expected way reaching its peak around zero. When the delay is
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Figure 33: Experiment 2 with the Victor-Purpura edit-length distance. The estimates appear to be asymmetrical,
giving higher estimates for positive delays than expected.

larger than ±0.5 the estimates become more noisy and appear to invert their trends reaching quite high values for
delays around ±1. The nearest neighbour grouping under this metric appears to be better at capturing smaller
delays. In this case again the relatively small sample-region size ratio may have its negative effect, but we will not
investigate the effect of sample-set sizes on the experimental results here. We are satisfied with demonstrating that
the estimator performs well on the task in experiment 1 and additionally appears to capture time the dynamics of
time delays in the spike-train signals to some extent.

4.3 Connectivity inference

Figure 34: A graph of the hypothetical synaptic connections between the four neurons sampled in experiment 1.
The edges are labelled with the means of the mutual information estimates for each pair.

The results from experiment 1 definitively establish a linear relationship between the strength of the synapse con-
necting two neurons in a network and the mutual information between their signals. The presence of this relationship
validates the estimation model and suggests that we should be able to reconstruct some of the connectivity between
the sampled neurons. Figure 35 gives all the pairwise results from experiment 1, omitting the doubling results for
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the relationships over synapses 3 → 1 and 3 → 0 which are analogous to the ones over 2 → 0 and

2 → 1 respectively. In a real experimental situation we are likely to have results from a network wired by
synapses of specific strengths. Use our “insight” about how the MI estimates between different pairs of neurons
vary together we can find some of the possible scenarios when the connections could be inferred correctly. We will
only consider the subset of cases that were already simulated - that is when the inverse-proportional relationship
between the strengths of the two pairs of synapses - represented by the vertical and diagonal edges in the graph
respectively.
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Figure 35: The combined results from experiment 1.

The the edges of the graph in figure 34 represent hypothetical synaptic connections between each pair of neurons
and are labelled with the average MI estimates recorded between them in in experiment 1. These means are highest
for the pairs of neurons that are truly connected. However, as can be seen from the plot in figure 35 there is no
structure in the MI estimates between pairs of neurons of the same kind that are in fact not connected. Regardless
of the synaptic strength between connected neurons these estimates appear to be somewhat uniformly distributed.
Due to their stochastic nature in many cases they may not be very helpful if we are trying to infer the connectivity
of the network using just the data processing inequality as discussed. Therefore we will exclude these cases and
make the assumption that the results we obtained for these estimates are close to the average and are lower than
the ones for pairs of neurons that are actually connected. That is we will consider the sub-cases when the MI
estimates between pairs of connected neurons vary roughly between 0.5 and 0.9, keeping in mind their relationship,
and the estimates for I(n1;n0) and I(n2;n3) gravitate around 0.5 and 0.3 respectively.

It turns out that in these cases, which are not quite unlikely within our simulated subset, the ARACNE strategy,
described in [24, 26], is successful at identifying the true connections correctly. If the minimum-MI edge is removed
from each possible triplet we are left only with the vertical and diagonal ones in the graph. The same results
can be obtained by considering each triplet of neurons, thought of as spike-train variables, as a potential Markov
chain and applying the DPI. Inferring the directions of the connections however, is a more involved task requiring
some insight about the temporal structure of the signals apart from the mutual information between them. The
important take-away point is that the estimates of the metric-space model for mutual information investigated here
are valid and could be used by MI- based network inference algorithms reliably.
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Conclusion

The aim of this project was to implement and test a model for estimating mutual information in metric spaces
without coordinates in the context of computational neuroscience. The process of achieving this involved extensive
research on the mathematical and information-theoretic grounds for its emergence, the metric-space framework
for computing spike-train distances it relies on, and the computational methods for simulating neural signalling
behaviour.

A neural simulation environment was developed in software to serve as the basis for constructing experiments
designed to test the estimator. Two types of cutting-edge spike-train metrics have been implemented. It was
demonstrated that probability densities can be successfully estimated using nearest-neighbour statistics in the met-
ric spaces induced by these similarity measures. The implemented information estimator is simple and elegant and
provides a novel direct way of estimating information-theoretic quantities depending on the probability distributions
of more than one variables taking values in metric spaces.

The neuroscientific problem of calculating mutual information has no analytical solution to test the estimates
against. The alternative estimation technique is effectively cumbersome and operates on a different principle risk-
ing to fit the space of spike-trains into the Procrustean bed of direct time discretisation. Therefore a strategy was
devised for the verification of mutual information estimates based on criteria reflecting their implicit relationship
to simulation parameters. Additionally, the nearest-neighbour resolution was investigated and the convergence of
the estimates was tested on increasing amounts of input data under constant experimental conditions. Traditional
correlation analysis has been used to quantify linear relationships along with the least-squares linear regression
model. Both the Pearson correlation coefficient and the mutual information estimates were demonstrated to ex-
hibit convergence behaviour.

The implications of the presented results to information-theoretic analysis in spaces with non-manifold geometry are
yet to unfold. Here they served as a practical proof for the concept of using the marginal probability distribution
of one variable as an integration measure in the metric space of another one to some approximation. We have
seen this idea develop progressively through the work of Kozachenko and Leonenko [5], Kraskov, Stoegbauer and
Grassberger [17], and Houghton and Tobin [27, 23].

The software and results produced during this year-long project will be used for its further development during the
summer period. A version of the estimator for the case when one of the variables is coming from a discrete corpus
has already been implemented and applied to real experimental data recording neural signals of a laboratory mouse
running in a maze. Other, initially intended extensions have not been developed entirely to this point and are yet
to be completed. The problem and its solution open up an array of possibilities for research and applications. And
while this concludes the current work it will be interesting to continue exploring the topic.
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Appendix

Experiment 1 - Implementation

1 from __future__ import division
2
3 from neuro import *
4
5 import numpy as np
6 import scipy as scp
7 import matplotlib as mp
8 import matplotlib.pyplot as plt
9

10 plt.switch_backend(’QT4Agg ’)
11
12 # EXPERIMENTAL NETWORK CONNECTIVITY
13 #
14 # Integrate -and -fre neurons {0 ,1}
15 #
16 # 0 1
17 # ^ ^
18 # |\1-g/|
19 # | \ / |
20 # g | x | g Synapse strength g in [0 ,1]
21 # | / \ |
22 # |/ \|
23 # 2 3
24 #
25 # Poisson neurons {2 ,3}
26
27 # Global parameters ------------------------------------------------------------
28 mili = 0.001 # Scaling factor 10^ -3
29
30 E_l = -70*mili # Standard reverse potential
31 V_th = -54*mili # Vth = -40 [mV]
32 V_res = -80*mili # Reset membrane potential
33 R_m = 1 # Rm = 1[ M_ohm]
34 I_e = 18* mili # Ie = 3.1[ nA]
35 t_M = 30* mili # tau_m = 10[ ms] = C_m*Rm time constant of the membrane
36 t_Ref = 5*mili # Refractory period = 5[ms]
37
38 dt = 1*mili # Time scale [ms]
39 T = 1 # total simulation period [s]
40
41 t_S = 10* mili # Time scale of the synapse
42
43 IF = 2 # Number of Integrate and Fire neurons
44 P = 2 # Number of Poisson neurons
45 N = IF + P # Total number of neurons
46
47 minRate = 10 # maximum average spike -rate for poisson neurons
48 maxRate = 50 # maximum average spike -rate for poisson neurons
49 rateRange = maxRate - minRate
50
51 samples = [] # object storing experimental sample set
52 data = []
53 trials = 48 # number of simulation rounds in experiment
54
55 g_res = 50 # no. of synapse strength steps over [0 ,1] ~> resolution
56 g_bin = 1.0/ g_res # width of synapse strength step based on g_res
57 g_E = 0.5
58 g_sqrd_E = 0
59
60
61 h1 = 12 # size of open balls in spike -trrain metric space
62 h2 = 12
63
64 tau_vR = 12* mili
65 vR_metric = (metric(’vR’, tau = tau_vR), ’van Rossum ’)
66 VP_metric = (metric(’VP’, q = 166), ’Victor -Purpura ’)
67
68 #metric = vR_metric
69 metric = vR_metric
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Calculating mutual information in metric spaces

71 MI_1_0 = []
72 MI_1_0_E = 0
73 MI_1_0_sqrd_E = 0
74 MI_1_0xG_E = 0 # mean of MI_1_0 x g
75
76 MI_2_0 = []
77 MI_2_0_E = 0
78 MI_2_0_sqrd_E = 0
79 MI_2_0xG_E = 0 # mean of MI_2_0 x g
80
81 MI_3_0 = []
82 MI_3_0_E = 0
83 MI_3_0_sqrd_E = 0
84 MI_3_0xG_E = 0 # mean of MI_3_0 x g
85
86 MI_2_3 = []
87 MI_2_3_E = 0
88 MI_2_3_sqrd_E = 0
89 MI_2_3xG_E = 0 # mean of MI_2_3 x g
90
91
92 # Experiment Simulation ---------------------------------------------------------
93
94 # Convey experiment over a variation of synapse strengths
95 for g in range(1, g_res) :
96 g *= g_bin
97 sample = experiment ()
98 cMat = np.array ([[ 0, 0, 0, 0],
99 [ 0, 0, 0, 0],

100 [ g, 1-g, 0, 0],
101 [1-g, g, 0, 0]])
102
103 # simulate network a number of trials to generate sample data
104 for r in range(trials) :
105 # Initialise network parameters
106 Vs = V_res + np.random.rand(IF)*(V_th - V_res)
107 sTs = -t_M + np.random.rand(N)*t_M
108 sRates = minRate + np.random.rand(P)*( rateRange)
109
110 neurons = []
111 for i in range(IF) :
112 neurons.append(neuron(i, Vs[i], sTs[i], E_l , V_th , V_res , R_m , I_e , t_M , t_Ref))
113 for i in range(IF, N) :
114 neurons.append(pNeuron(i, sRates[i-IF], T, dt, sTs[i]))
115
116 # Simulate network and save data
117 sample.simulation += [netSim(neurons , cMat , T, dt)]
118 Vs, Gs, raster = sample.simulation [-1]. simulate ()
119
120 sample.population += [neurons]
121
122 # add experiment results to samples set
123 samples += [sample]
124
125 # assemble together spike trains elicited from each neuron over trials
126 neuro_var = []
127 for n in range(N):
128 s_trains = []
129 for r in range(trials):
130 s_trains += [samples [-1]. population[r][n]. sTrain]
131
132 neuro_var += [s_trains]
133
134 MI_1_0_g = computeMI(neuro_var [1], neuro_var [0], metric [0], h1, h2)
135 MI_1_0.append(MI_1_0_g)
136 MI_1_0_E += MI_1_0_g
137 MI_1_0_sqrd_E += MI_1_0_g **2
138 MI_1_0xG_E += MI_1_0_g*g
139
140 MI_2_0_g = computeMI(neuro_var [2], neuro_var [0], metric [0], h1, h2)
141 MI_2_0.append(MI_2_0_g)
142 MI_2_0_E += MI_2_0_g
143 MI_2_0_sqrd_E += MI_2_0_g **2
144 MI_2_0xG_E += MI_2_0_g*g
145
146 MI_3_0_g = computeMI(neuro_var [3], neuro_var [0], metric [0], h1, h2)
147 MI_3_0.append(MI_3_0_g)
148 MI_3_0_E += MI_3_0_g
149 MI_3_0_sqrd_E += MI_3_0_g **2
150 MI_3_0xG_E += MI_3_0_g*g
151
152 MI_2_3_g = computeMI(neuro_var [2], neuro_var [3], metric [0], h1, h2)
153 MI_2_3.append(MI_2_3_g)
154 MI_2_3_E += MI_2_3_g
155 MI_2_3_sqrd_E += MI_2_3_g **2
156 MI_2_3xG_E += MI_2_3_g*g
157
158 g_sqrd_E += g**2

III



160 MI_1_0_E /= (g_res -1)
161 MI_1_0_sqrd_E /= (g_res -1)
162 MI_1_0xG_E /= (g_res -1)
163
164 MI_2_0_E /= (g_res -1)
165 MI_2_0_sqrd_E /= (g_res -1)
166 MI_2_0xG_E /= (g_res -1)
167
168 MI_3_0_E /= (g_res -1)
169 MI_3_0_sqrd_E /= (g_res -1)
170 MI_3_0xG_E /= (g_res -1)
171
172 MI_2_3_E /= (g_res -1)
173 MI_2_3_sqrd_E /= (g_res -1)
174 MI_2_3xG_E /= (g_res -1)
175
176 g_sqrd_E /= (g_res -1)
177
178 pearson_1_0 = (MI_1_0xG_E - MI_1_0_E*g_E)/np.sqrt(( MI_1_0_sqrd_E - MI_1_0_E **2)*( g_sqrd_E - g_E **2))
179 pearson_2_0 = (MI_2_0xG_E - MI_2_0_E*g_E)/np.sqrt(( MI_2_0_sqrd_E - MI_2_0_E **2)*( g_sqrd_E - g_E **2))
180 pearson_3_0 = (MI_3_0xG_E - MI_3_0_E*g_E)/np.sqrt(( MI_3_0_sqrd_E - MI_3_0_E **2)*( g_sqrd_E - g_E **2))
181 pearson_2_3 = (MI_2_3xG_E - MI_2_3_E*g_E)/np.sqrt(( MI_2_3_sqrd_E - MI_2_3_E **2)*( g_sqrd_E - g_E **2))
182
183 print ’Mean MI(n1;n0) = ’ + str(MI_1_0_E)
184 print ’Pearson coef. MI(n1;n0) = ’ + str(pearson_1_0)
185 print ’Mean MI(n2;n0) = ’ + str(MI_2_0_E)
186 print ’Pearson coef. MI(n2;n0) = ’ + str(pearson_2_0)
187 print ’Average MI(n3;n0) = ’ + str(MI_3_0_E)
188 print ’Pearson coef. MI(n3;n0) = ’ + str(pearson_3_0)
189 print ’Mean MI(n2;n3) = ’ + str(MI_2_3_E)
190 print ’Pearson coef. MI(n2;n3) = ’ + str(pearson_2_3)
191
192
193 # Produce Graphs ----------------------------------------------------------------
194 # Plot Mutual Information
195
196 #set up x values (g - for conductance )
197 g_range = [a*g_bin for a in range(1,g_res)]
198
199 # MI(Neuron_2; Neuron_0)
200 #perform linear regression on generated data
201 y = np.array(MI_2_0)
202 x = np.array(g_range)
203 A = np.vstack ([x, np.ones( len(x))]).T
204 m20 , c20 = np.linalg.lstsq(A, y)[0]
205
206 #scatter Mutual Information between neurons 2 & 0
207 #and plot fitted line
208 plt.figure(1, dpi =120)
209 plt.scatter(g_range , MI_2_0 , marker = ’+’, color = ’black’,
210 label=’$MI_ {2,0}$ computed with ’+metric [1]+’ metric ’+
211 ’\n$g_ {2,0}=g,$ mean $\\mu=’+str(round(MI_2_0_E ,2))+
212 ’$\ncorrelation coefficient $\\rho=’+
213 str(round(pearson_2_0 ,2))+’$’)
214 plt.plot(x, m20*x + c20 , linestyle=’--’, color=’black ’,
215 label=’regression line: $I\\ approx ’+str(round(m20 ,2))+
216 ’g+’+str(round(c20 ,2))+’$’)
217 plt.ylabel(’$Mutual$ $information$ $I(n_2;n_0)$’, fontsize =20)
218 plt.xlabel(’$g$’, fontsize =20)
219 plt.ylim ( -0.2 ,1.5)
220 plt.legend ()
221 plt.show()
222
223
224 # MI(Neuron_2; Neuron_0)
225 #perform linear regression
226 y = np.array(MI_3_0)
227 m30 , c30 = np.linalg.lstsq(A, y)[0]
228
229 plt.figure(2, dpi =120)
230 plt.scatter(g_range , MI_3_0 , marker = ’+’, color = ’black’,
231 label=’$MI_ {3,0}$ computed with ’+metric [1]+’ metric ’+
232 ’\n$g_ {3,0}=1-g,$ mean $\\mu=’+str(round(MI_3_0_E ,2))+
233 ’$\ncorrelation coefficient $\\rho=’
234 +str(round(pearson_3_0 ,2))+’$’)
235 plt.plot(x, m30*x + c30 , linestyle=’--’, color=’black ’,
236 label=’regression line: $I\\ approx ’+str(round(m30 ,2))+
237 ’g+’+str(round(c30 ,2))+’$’)
238 plt.ylabel(’$Mutual$ $information$ $I(n_3;n_0)$’, fontsize =20)
239 plt.xlabel(’$g$’, fontsize =20)
240 plt.ylim(-0.2, 1.5)
241 plt.legend ()
242 plt.show()
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244
245 # MI(Neuron_3; Neuron_0) vs MI(Neuron_2; Neuron_0)
246 #perform linear regression
247 x = np.array(MI_2_0)
248 sortx = x.argsort ()
249 x = np.array(x)[sortx]
250 A = np.vstack ([x, np.ones( len(x))]).T
251 y = np.array(MI_3_0)
252 m3021 , c3021 = np.linalg.lstsq(A, y)[0]
253
254 plt.figure(0, dpi =120)
255 plt.scatter(x, y, marker = ’+’, color = ’black’,
256 label=’$MI_ {3,0}$ vs $MI_ {2,0}$, ’+
257 ’both computed with ’+metric [1]+’ metric ’)
258 plt.plot(x, m3021*x + c3021 , linestyle=’--’, color=’black ’,
259 label=’regression line $MI_ {3 ,0}\\ approx ’+str(round(m3021 ,2))+
260 ’MI_{2 ,0}+’+str(round(c3021 ,2))+’$’)
261 plt.ylabel(’$Mutual$ $information$ $I(n_3;n_0)$’, fontsize =20)
262 plt.xlabel(’$Mutual$ $information$ $I(n_2;n_0)$’, fontsize =20)
263 plt.ylim(-0.2, 1.5)
264 plt.legend ()
265 plt.show()
266
267
268 # MIXED PAIRWISE MI PLOT
269 #perform linear regressions
270 y = np.array(MI_1_0)
271 m10 , c10 = np.linalg.lstsq(A, y)[0]
272 y = np.array(MI_2_3)
273 m23 , c23 = np.linalg.lstsq(A, y)[0]
274
275 plt.figure(3, dpi =120)
276
277 plt.scatter(g_range , MI_1_0 , facecolors=’none’, edgecolors=’red’,
278 label=’$\\bar{I}(n_1;n_0)\\ approx ’+str(round(MI_1_0_E ,2))+
279 ’$\ncorrelation coef. $\\rho_ {1,0}=’+str(round(pearson_1_0 ,2))+’$’)
280 plt.plot(x, m10*x + c10 , linestyle=’--’, color=’red’)
281
282 plt.scatter(g_range , MI_2_0 , marker = ’+’, color = ’blue’,
283 label=’$\\bar{I}(n_2;n_0)\\ approx ’+str(round(MI_2_0_E ,2))+
284 ’,$ $g_{2 ,0}=g$’+
285 ’\ncorrelation coef. $\\rho_ {2,0}=’+str(round(pearson_2_0 ,2))+’$’)
286 plt.plot(x, m20*x + c20 , linestyle=’--’, color=’blue’)
287
288 plt.scatter(g_range , MI_3_0 , marker = ’x’, color = ’green’,
289 label=’$\\bar{I}(n_3;n_0)\\ approx ’+str(round(MI_3_0_E ,2))+
290 ’,$ $g_{3,0}=1-g$’+
291 ’\ncorrelation coef. $\\rho_ {3,0}=’+str(round(pearson_3_0 ,2))+’$’)
292 plt.plot(x, m30*x + c30 , linestyle=’--’, color=’green ’)
293
294 plt.scatter(g_range , MI_2_3 , facecolors=’none’, edgecolors=’black’,
295 label=’$\\bar{I}(n_2;n_3)\\ approx ’+str(round(MI_2_3_E ,2))+
296 ’$\ncorrelation coef. $\\rho_ {2,3}=’+str(round(pearson_2_3 ,2))+’$’)
297 plt.plot(x, m23*x + c23 , linestyle=’--’, color=’black ’)
298
299 plt.ylabel(’$Mutual$ $information$ ’, fontsize =20)
300 plt.xlabel(’$g$’, fontsize =20)
301 plt.ylim(-0.2, 1.5)
302 plt.legend ()
303 plt.show()

Figure 36: neuroSim1.py
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Experiment 2 - Implementation

1 from __future__ import division
2
3 from neuro import *
4
5 from copy import deepcopy
6
7 import numpy as np
8 import scipy as scp
9 import matplotlib as mp

10 import matplotlib.pyplot as plt
11
12 plt.switch_backend(’QT4Agg ’)
13
14 # EXPERIMENTAL NETWORK CONNECTIVITY
15 #
16 # Integrate -and -fre neurons {0 ,1}
17 #
18 # 0 1
19 # ^ ^
20 # |\1-g/|
21 # | \ / |
22 # g | x | g Synapse strength g in [0 ,1]
23 # | / \ |
24 # |/ \|
25 # 2 3
26 #
27 # Poisson neurons {2 ,3}
28
29 # Global parameters ------------------------------------------------------------
30 mili = 0.001 # Scaling factor 10^ -3
31
32 E_l = -70*mili # Standard reverse potential
33 V_th = -54*mili # Vth = -40 [mV]
34 V_res = -80*mili # Reset membrane potential
35 R_m = 1 # Rm = 1[ M_ohm]
36 I_e = 18* mili # Ie = 3.1[ nA]
37 t_M = 30* mili # tau_m = 10[ ms] = C_m*Rm time constant of the membrane
38 t_Ref = 5*mili # Refractory period = 5[ms]
39
40 dt = 1*mili # Time scale [ms]
41 T = 1 # total simulation period [s]
42
43 t_S = 10* mili # Time scale of the synapse
44
45 IF = 2 # Number of Integrate and Fire neurons
46 P = 2 # Number of Poisson neurons
47 N = IF + P # Total number of neurons
48
49 minRate = 10 # maximum average spike -rate for poisson neurons
50 maxRate = 20 # maximum average spike -rate for poisson neurons
51 rateRange = maxRate - minRate
52
53 trials = 48 # number of simulation rounds in each experiment
54 rounds = 23
55
56 d_luft = 18
57 d_bin = 0.05 # 10**( - len(str(d_luft)))
58
59 h1 = 12 # size of open balls in spike -trrain metric space
60 h2 = 12
61
62 tau_vR = 12* mili
63 vR_metric = metric(’vR’, tau=tau_vR)
64 VP_metric = metric(’VP’, q=166)
65
66 metric = VP_metric
67
68 MI_2_0 = []
69
70 g = 0.9 # synapse 2-0 and 3-1 strength == 1 minus 2-1 or 3-0
71 # set up network topology
72
73 samples = []
74 cMat = np.array ([[ 0, 0, 0, 0],
75 [ 0, 0, 0, 0],
76 [ g, 1-g, 0, 0],
77 [1-g, g, 0, 0]])
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79 # Experiment Simulation ---------------------------------------------------------
80
81 for r in range(rounds):
82 sample = experiment ()
83 # simulate network a number of trials to generate sample data
84 for t in range(trials):
85 # initialise network parameters
86 Vs = V_res + np.random.rand(IF)*(V_th - V_res)
87 sTs = -t_M + np.random.rand(N)*t_M
88 sRates = minRate + np.random.rand(P)*( rateRange)
89 neurons = []
90 for i in range(IF):
91 neurons.append(neuron(i, Vs[i], sTs[i], E_l , V_th , V_res , R_m , I_e , t_M , t_Ref))
92 for i in range(IF, N):
93 pN = pNeuron(i, sRates[i-IF], T, dt, sTs[i])
94 pN.delay (0.05)
95 neurons.append(pN)
96
97 # simulate network and save data
98 sample.simulation.append(netSim(neurons , cMat , T, dt))
99 Vs, Gs, raster = sample.simulation [-1]. simulate ()

100 sample.population.append(neurons)
101
102 samples.append(sample)
103
104 #slide trhough the predefined range of delays
105 for d in range(-d_luft , d_luft +1) :
106 d *= d_bin
107 # estimate information at each round and each delay
108 MI_d = []
109 for s in range(rounds):
110 # group together spike trains from each IF neuron over trials
111 neuro_var = []
112 for n in range(IF):
113 s_trains = []
114 for t in range(trials):
115 s_trains.append(samples[s]. population[t][n]. sTrain)
116 neuro_var.append(s_trains)
117
118 # delay and group together spike trains from each Poisson neuron over trials
119 for n in range(IF, N):
120 s_trains = []
121 for t in range(trials):
122 pN = deepcopy(samples[s]. population[t][n])
123 pN.delay(d)
124 s_trains.append(pN.sTrain)
125 neuro_var.append(s_trains)
126
127 # compute mutual information between neurons 2 & 0 at current round
128 MI_d.append(computeMI(neuro_var [2], neuro_var [0], metric , h1 , h2))
129 # add list of mutual informations computted at current delay to array
130 MI_2_0.append(MI_d)
131
132 #calculate mean MI and std.dev from samples at each delay point
133 MI_2_0_avg = []
134 MI_2_0_std = []
135 for d in range( len(MI_2_0)):
136 MI_d_avg = 0
137 for m in range(rounds):
138 MI_d_avg += MI_2_0[d][m]
139 MI_d_avg /= rounds
140 MI_d_std = 0
141 for m in range(rounds):
142 MI_d_std += (MI_2_0[d][m] - MI_d_avg)**2
143 MI_d_std = np.sqrt(MI_d_std/rounds)
144
145 MI_2_0_avg.append(MI_d_avg)
146 MI_2_0_std.append(MI_d_std)
147
148 # Produce Graphs ----------------------------------------------------------------
149
150 #plot MI
151 d_lays = [d*d_bin for d in range(-d_luft ,d_luft +1)]
152
153 plt.figure(2,dpi =120)
154 #plt.scatter(d_lays , MI_2_0_avg )
155 plt.errorbar(d_lays , MI_2_0_avg , yerr=MI_2_0_std , fmt=’o’)
156 plt.ylabel(’$Mutual$ $information$ $I(n_2;n_0)$’, fontsize =23)
157 plt.xlabel(’$Poisson$ $spikes$ $delay$ $[s]$’, fontsize =23)
158 plt.show()

Figure 37: neuroSim2.py
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